- 博客(51)
- 收藏
- 关注
原创 Task 02 - Leetcode
66. 加一class Solution: def plusOne(self, digits: List[int]) -> List[int]: digits_idx = len(digits) - 1 while digits_idx >= 0 and digits[digits_idx] == 9: digits[digits_idx] = 0 digits_idx-= 1 if dig
2021-11-17 22:20:51 301
原创 Task 01 - Leetcode
1. 两数之和知识点:哈希表正确答案class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: size = len(nums) num_dict = {} for i in range(size): if (target - nums[i]) in num_dict: return [num
2021-11-15 22:11:40 320
原创 论文笔记《Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network》
【文章】Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network【作者】Zhang X, Huang C, Xu Y, et al.【来源】AAAI 2021【代码】https://github.com/jillbetty001/ST-GDN现存问题大多数研究聚焦于临近区域的近邻空间相关性,忽略了全局地理上下文信息大多数研究无法对具有时间依赖性和多分辨率的复杂流量转移规律进行编码本文概览提出名为 Sp.
2021-03-21 15:33:02 3160 16
原创 论文笔记《Coupled Layer-wise Graph Convolution for Transportation Demand Prediction》
目录本文贡献MethodologyAdjacency Matrix GenerationCoupled Layer-wise Graph ConvolutionMulti-level AggregationTemporal Dependence ModelingExperimentsDatasetsExperimental SetupMain ResultsComparison with BaselinesAblation Study本文贡献新的图卷积结构:能自适应地提取多层级空间依赖关系。该结构在不
2021-02-03 17:33:39 808 2
原创 Datawhale组队学习(Pandas) task11-综合练习
任务4 显卡日志最开始想要通过str.extract(pat)提取有用信息,然后长宽表变换得到答案的,后来在实践过程中并没有实现,于是 解答该题思路转化为:每一条测试都是两行,首先我将奇数行/偶数行分别存储偶数行提取状态、精度、模型信息奇数行提取模型、时间信息本来最开始思路是根据模型 merge两个结果的,后来突然发现不同模型对应不同状态、精度,于是索性根据默认的索引直接拼接了# 提取有用信息行data = pd.read_table('./data/test/benchmark.txt
2021-01-13 20:05:13 205 1
原创 Datawhale组队学习(Pandas) task10-时序数据
时间戳单独时间点即为时间戳,pandas中称为Timestamp,一系列时间戳可以组成DatetimeIndexTimestamp的构造与属性import numpy as npimport pandas as pdts = pd.Timestamp('2020-1-1 08:10:30')tsTimestamp('2020-01-01 08:10:30')# 通过 year, month, day, hour, min, second 可以获取具体的数值ts.year # 20
2021-01-10 21:03:03 241
原创 Datawhale组队学习(Pandas) task9-分类数据
第九章 分类数据import numpy as npimport pandas as pdcat对象cat对象的属性category类型,处理分类类型变量,将普通序列转化成分类变量可使用astype方法df = pd.read_csv('data/learn_pandas.csv',usecols=['Grade', 'Name', 'Gender', 'Height', 'Weight'])df.head() Grade Nam
2021-01-07 21:40:57 257
原创 Datawhale组队学习(Pandas) task8-文本数据
第八章 文本数据目录1. str对象2. 正则表达式基础3. 文本处理的五类操作3.1 拆分3.2 合并3.3 匹配3.4 替换3.4 提取4. 常用字符串函数4.1 字母型函数4.2 数值型函数4.3 统计型函数4.4 格式型函数5. 练一练Ex1:房屋信息数据集Ex2:《权力的游戏》剧本数据集1. str对象import numpy as npimport pandas as pdvar = 'abcd'str.upper(var)'ABCD's = pd.Series(['0ab
2021-01-06 11:24:41 244
原创 Datawhale组队学习(Pandas) task7-缺失数据
缺失值的统计和删除缺失信息的统计# 查看每个单元格是否有缺失 isna()或isnull()df = pd.read_csv('data/learn_pandas.csv',usecols=['Grade', 'Name', 'Gender', 'Height','Weight', 'Transfer'])df.isna().head() Grade Name Gender Height Weight
2021-01-03 17:59:39 228 2
原创 Task Special & Task 11 综合练习
Task Special & Task 11 综合练习任务一 企业收入的多样性import pandas as pdimport numpy as npdf1 = pd.read_csv('./data/test_1/Company.csv')df2 = pd.read_csv('./data/test_1/Company_data.csv')###### 处理df2 ####### 从日期列中分割出年份df2['年份'] = [x.split('/')[0] for x in
2021-01-01 11:32:31 241 1
原创 Datawhale组队学习(Pandas) task6-连接
第六章 连接目录1. 关系型连接1.1 连接基本概念1.2 值连接1.3 索引连接2. 方向连接2.1 concat2.2 序列与表的合并3. 类连接操作3.1 比较3.2 组合Ex1:美国疫情数据集Ex2:实现join函数1. 关系型连接1.1 连接基本概念将两张相关的表按照某一个或某一组键连接起来,关键要素是键和连接形式,其中连接形式包含:左连接 left:以左边的键为准,若右表中的键 出现于左表,则将改键添加到左表。否则处理为缺失值。右连接 right:类似处理内连接 inner:.
2020-12-29 19:04:37 245
原创 Datawhale组队学习(Pandas) task5-变形
Joyful Pandas 第五章 变形练习1 美国非法药物数据集我的思路# 1. 考察长表变宽表的知识点df = pd.read_csv('data/drugs.csv').sort_values(['State','COUNTY','SubstanceName'],ignore_index=True)df_pivot = df.pivot(index=['State','COUNTY','SubstanceName'],columns='YYYY',values='DrugReports'
2020-12-27 23:39:10 241 2
原创 Datawhale组队学习(Pandas) task4-分组
练习1:汽车数据集1-1:先过滤出所属 Country 数超过2个的汽车,即若该汽车的 Country 在总体数据集中出现次数不超过2则剔除,再按 Country 分组计算价格均值、价格变异系数、该 Country 的汽车数量,其中变异系数的计算方法是标准差除以均值,并在结果中把变异系数重命名为 CoV 。我的答案gb = df.groupby('Country')index_list = gb.filter(lambda x:x.shape[0]<=2).indexdf_drop =
2020-12-25 20:23:27 421 4
原创 Datawhale组队学习(Pandas) task3-索引
Joyful Pandas 第三章 索引写在前面:前两天每天看了大概4小时左右,对着教程把每个知识点敲了一遍。敲完之后感觉好多知识点彼此之间好相似,关掉教程回想这一章都大概讲了什么、什么顺序,发现只能回忆起局部的小点,框架上自己根本理不清。于是今天把教程又看了一遍,对照着整理导图,导图形成并不费很多时间,只是在整理过程中逐渐发现每个小节的关联、每个知识点的异同,终于清晰了一些。尤其在做习题过程中,强迫自己不要看教程去回想每道题对应什么知识点,然后去导图上对照,细节不清的再去看教程,这个过程很痛苦 但是
2020-12-22 19:08:32 267
原创 Datawhale组队学习(Pandas) task2-pandas基础
写在前面看了很多小伙伴task1的笔记,感觉很棒的同时也深受启发,学习过程不仅仅是教材等资料的理解和重复,更应该是自己的思考、串联、发问、尝试,这样才能学得深刻~ 但因为前者更容易,所以自己常常陷入那种效率不太高的努力陷阱中。那以后的打卡笔记就不做一个搬运工+补充工了,多记录自己的思考和尝试。import numpy as npimport pandas as pdpd.__version__'1.1.5'1. 文件读取和写入1.1 文件读取1.1.1 读取my_csv, my_tab
2020-12-19 20:29:38 418 6
原创 论文笔记《Spatio-Temporal Graph Structure Learning for Traffic Forecasting》
【论文】 Zhang Q, Chang J, Meng G, et al. Spatio-Temporal Graph Structure Learning for Traffic Forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(01): 1177-1185.【代码】 暂无本篇文章主要是解决如何建模复杂、动态的空间依赖性问题,作者认为现在用的图卷积神经网络存在以下几个问题:.
2020-12-15 16:57:01 2443 4
原创 Datawhale组队学习(Pandas) task1-预备知识
【1】第20期 学习者手册(Pandas)【2】第一章 预备知识1. Python 基础1.1 列表推导式与条件赋值问题1:生成 [0, 2, 4, 6, 8] 样式的数字序列写法1:定义函数+循环def my_func(x): return x*2list = []for i in range(5): list.append(my_func(i)) print(list)写法2:定义函数+列表推导式list = [my_func(i) for i
2020-12-14 09:47:04 246
原创 论文笔记《Physical-Virtual Collaboration Modeling for Intra-and Inter-Station Metro Ridership Prediction》
目录AbstractIntroduction & Methodology物理图 (physical graph)流量相似性图 (similarity graph)流量相关性图 (correlation graph)ModelGraph Convolution Gated Recurrent Unit (GC-GRU)Fully-Connected Gated Recurrent Unit (FC-GRU)Collaborative Gated Recurrent Module (CGRM)Physi
2020-11-17 14:46:06 1442
原创 论文笔记《ST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting》
文章《ST-GRAT: A Novel Spatio-temporal Graph Attention Network for Accurately Forecasting Dynamically Changing Road Speed》Abstract预测道路交通速度的难点:(1)路段类型不同;(2)速度的突然变化;(3)路段间的空间依赖性。本文提出名为 spatio-temporal graphattention (ST-GRAT) 的模型,包含三方面:(1) spatial attent.
2020-10-28 16:13:50 1882 5
原创 论文笔记《HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival》
Abstract本文目标是预计到达时间(The estimated time of arrival, ETA),现有研究存在问题:很少有研究将结构化的图数据考虑在内,更不用说异构的信息网络了。本文提出 HetETA 模型 旨在ETA任务中利用异构的图数据,具体做法:(1)将路网地图转化为多相关信息网络,引入车辆轨迹图联合考虑车辆行为模式(2)时间信息分为近期(recent periods)、日周期(day periods)、周周期(week periods),然后对每个时间模块分别建模。1.
2020-10-21 18:32:39 2178 1
原创 论文笔记《Self-Attention ConvLSTM for Spatiotemporal Prediction》
1. Abstract为提取空间特征的全局和局部依赖性,本文向ConvLSTM引入了一个新的自注意力机制(self-attention mechanism)子注意力记忆模块(self-attention memory , SAM) 能在时空域记住那些具有长期依赖性的特征2. Introduction本文的创新点/贡献在于:提出一个新的基于ConvLSTM的变体模型用于时空预测,命名为SA-ConvLSTM,特点是能很好捕获长程空间依赖性。设计了一个基于记忆的自相关模块(memory-bas
2020-10-19 20:01:02 4930 30
原创 leetcode数组类
按这篇文章顺序刷题:有没有人一起从零开始刷力扣 ,本系列博客记录刷题中的知识点,坚持做题和总结~(ง •_•)ง一、数组的遍历题目1:414# 解题思路:# 1. 去重# 2. 小于3位数,返回最大值# 3. 大于等于2位数,返回第三大的数class Solution: def thirdMax(self, nums: List[int]) -> int: new = set(nums) if len(new)<3:
2020-08-03 20:45:53 228
原创 论文笔记《Graph WaveNet for Deep Spatial-Temporal Graph Modeling》
Abstract现存问题:在捕获空间依赖性方面。 大多在固定图上捕获空间依赖关系,这种固定图结构不一样反映真实依赖关系,而真实依赖关系可能由于不完整的邻接关系而丢失。 **在捕获时间依赖性方面。 RNNs/CNNs等在捕获长程的时间序列时,效果不太好。本文解决方法:提出自适应邻接矩阵,并通过节点嵌入学习它堆叠空洞1D卷积,感受野随着堆叠层数增加而指数级增加,进而捕获长程关系1. Introduction时空图模型的一个基本假设是:节点未来信息仅取决于该节点和其邻居的历史信息。后续研
2020-07-08 23:34:01 3328 7
原创 赛题笔记《地铁乘客流量预测比赛》
1. 赛题背景分析地铁站的历史刷卡数据,预测站点未来客流量变化,挖掘出行规律提供2019.1.1-2019.1.25共81个站点的刷卡数据记录,以及路网地图(邻接关系),预测未来一天各站点的逐十分钟累积进出站人次2. EDA答辩人2:周末(图中前两簇)与工作日(图中后五簇)的流量差异,与站点类型有关 ,办公属性站点差异较大,旅游属性站点差异较小。所以纯粹以周末或非周末作为区分,可能不太合理城际客流的“潮汐效应”,火车站站点的周六和周日流量会存在镜像分布的特点,就比如周六到火车站乘火车,周
2020-07-03 12:45:04 3321
原创 读书笔记《数学建模算法与应用》第4-6章
注:章节序号与书中保持一致,省略部分为基础概念4. 图与网络模型及方法4.2 最短路问题4.2.1 两个指定顶点之间的最短路径Dijkstra 算法 function[mydistance,mypath]=mydijkstra(a,sb,db);a 邻接矩阵a(i,j) i-j的距离,可以是有向的sb 起点的标号db 终点的标号mydistance 最短路距离mypath 最短路路径4.2.3 每对顶点之间的最短路径Dijkstra 算法是时间复杂度是 O(n3)O(n^3).
2020-07-01 00:29:38 1556
原创 论文笔记《Spatial-Temporal Synchronous Graph Convolutional Networks》
回顾下前面的这篇文章 论文笔记《Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting》在这篇文章中存在一个问题,即模型中的时空图卷积块(GCN+Conv 部分) 先在空间维度图卷积,再在时间维度一维卷积,这样的分步操作并没有实现时空相关性的同步捕获。所以,本篇文章重点解决这个问题。1. Introduction首先,需要明确在时空网络中的节点的三类依赖关系。之所以会存在这
2020-06-28 21:10:20 6732 33
原创 读书笔记《数学建模算法与应用》第1-3章
1. 线性规划1.1 常规线性规划问题解决问题: 例如如何利用现有资源来安排生产,以取得最大经济效益问题。问题特征: 在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。Matlab 求解:Matlab 求解线性规划问题标准型实例% f 价值向量,注意分号隔开f = [-2; -3; 5];% a, b 线性不等式约束a = [-2, 5, -1; 1, 3, 1]; b=[-10; 12];% aeq, beq 线性等式约束aeq = [1, 1, 1];be
2020-06-28 12:19:33 1372
原创 读书笔记《深入浅出图神经网络》 Part 2
笔记终于写到了本书的核心部分,内容多且杂,每一部分都不太好理解,而且比单独理解某一部分更难理解的是这些知识点之间是如何串联的??拉普拉斯算子和拉普拉斯矩阵什么关系,怎么就从拉普拉斯矩阵讲到了图傅里叶变换,这些和卷积又有什么关系?种种问题都是理解图卷积的一个又一个拦路虎。本文意在梳理出书中比较关键的内容,结合各类博客的分享,做一个主要内容的抽取和梳理工作~目录第五章 图信号处理与图卷积神经网络1. 图信号2. 拉普拉斯算子 & 拉普拉斯矩阵2.1 拉普拉斯算子2.2 拉普拉斯矩阵2.2.1.
2020-05-25 21:08:18 717 2
原创 《动手学深度学习 pytorch版》代码笔记——第5-8章
第五章 卷积神经网络知识点1:randn() 与 rand()函数作用np.random.randn()从标准正态分布中返回一个或多个样本值np.random.rand(m, n)生成m行n列的均匀分布的伪随机数知识点2:统一数据类型描述: 5.1.3 图像中物体边缘检测中,第一个小例子会出现 expected backend CPU and dtype Float but got backend CPU and dtype Long 的报错。解决: 将X的数据
2020-05-22 18:52:33 299 4
原创 《动手学深度学习 pytorch版》代码笔记——第1-4章
【1】《动手学深度学习 pytorch版》【2】《动手学深度学习》对着敲代码时常会遇到零星问题,本篇博客意在记录实现过程中小小的坑,边学边记~1. 数据类型问题报错: Expected object of scalar type Double but got scalar type Float for argument #2 ‘mat2’异常代码行:def linreg(X, w,...
2020-05-08 10:58:21 1241
原创 读书笔记《深入浅出图神经网络》 Part 1
全书划分为3个部分:第 1-4 章:主要介绍图神经网络所需的基础知识,包括图的基本概念、卷积神经网络以及表示学习第 5-9 章:主要介绍图卷积神经网络理论基础和性质、图神经网络的各种变体和框架范式、图分类以及基于GNN的图表示学习第 10 章:图神经网络目前的应用第一章 图的概述1.1 图的基本定义图 由顶点(vertex) 和边(edge) 构成,顶点表示研究对象,边表示两个对...
2020-05-02 18:16:19 2238
原创 廖雪峰python教程(3)——函数式编程
1. 高阶函数1.1 map/reduce【1】一文搞懂python的map、reduce函数【2】廖雪峰python教程——函数式编程(1)map 函数map(function_to_apply, list_of_inputs)function_to_apply 代表函数list_of_inputs 代表输入序列返回迭代器# 如要实现列表中每个元素的平方,并返回新列...
2020-04-29 15:50:11 324
原创 廖雪峰python教程(2)——高级特性
廖雪峰python教程——高级特性1. 切片本小节的课后习题: 在不调用str的strip()方法情况下,实现一个trim()函数,去除字符串首尾的空格。(自己写了半天,然后一看别人写的,非常简洁。要注意利用递归。)def trim(s): if len(s) != 0: if s[0] == ' ': return trim(s[1:]...
2020-04-27 13:51:32 379
原创 综述笔记《Machine Learning for Combinatorial Optimization: a Methodological Tour d'Horizon》
这里写目录标题0. 补充概念1. Introduction1.1 Motivation0. 补充概念(1)旅行商问题(travelling salesman problem, TSP)典型旅行商问题 举例:有个快递员分别要给3家顾客送快递,他自己到达每个顾客家的路程各不相同,每个顾客之间的路程也各不相同。那么,如果想要将快递依次送达,并最终返回起点,哪一条路线所走的总距离最短?思路1-枚...
2020-04-26 20:41:22 2719
原创 廖雪峰python教程(1)——基础+函数章节
1. 字符编码【1】廖雪峰python教程——字符串和编码【2】彻底弄懂 Unicode 编码1个字节能表示的最大的整数就是255(二进制11111111=十进制255)2个字节可以表示的最大整数是655354个字节可以表示的最大整数是4294967295编码类型内容问题ASCII目前为止共定义了128个字符,包括大小写字母、数字和一些符号,如A-65,...
2020-04-25 14:08:07 364
原创 论文笔记《Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting》
1. Abstract本文目标是预测交通流,该问题最大的挑战是交通流数据的高度非线性和复杂的关系模式。现存的预测方法缺乏对交通流动态时空关系的建模,于是本文提出一种带注意力机制的图卷积神经网络 attention based spatial-temporal graph convolutional network (ASTGCN) model 具体思路:模型由3个独立的组件,每个组件分别对交通...
2020-04-21 19:46:10 13273 30
原创 论文笔记《Accelerating Primal Solution Findings for Mixed Integer Programs Based on Solution Prediction》
目录1. 模型框架1.1 训练数据生成1. 模型框架1.1 训练数据生成
2020-04-18 21:42:54 1047 3
原创 Datawhale组队学习 Task5-模型融合
目录大纲1. 集成学习Ensemble Learning1.1 Boosting1.2 Bagging和随机森林1.2.1 Bagging(全称 Bootstrap AGGregatING)1.2.2 随机森林(Random Forest)1.3 结合策略1.3.1 Stacking1.3.2 K折交叉验证下的Stacking(以5折为例)1.3.2 Blending1.3.3 Stacking ...
2020-04-03 23:05:15 375 1
原创 Boosting 25年(2014 周志华老师)报告笔记
强烈推荐周志华老师的这场报告,很好地串联了Boosting的发展过程,整场报告非常生动且清晰。下图是当时记的笔记。视频链接如下:周志华老师报告-Boosting 25年...
2020-04-03 09:35:32 459
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人