心得:
在删除节点并调整二叉树结构的题目中,是要把要删除节点符合条件的孩子返回,赋值,再设置成根节点的孩子。
通过数组构造二叉树的题目,,需要分割数组,可以同left和right来定义左右区间,当然需要注意区间的开闭。用left和right得出mid来分割区间。
第一题、修剪二叉搜索树 LeetCode669 https://leetcode.cn/problems/trim-a-binary-search-tree/submissions/
把要删除节点符合条件的孩子返回,赋值,再设置成根节点的孩子。
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if(root == NULL) return NULL;
if(root->val < low){
//把要删除节点符合边界的右孩子返回
TreeNode* right = trimBST(root->right, low, high);
return right;
}
if(root->val > high){
//把要删除节点符合边界的左孩子返回
TreeNode* left = trimBST(root->left, low, high);
return left;
}
root->left = trimBST(root->left, low, high);// root->left接入符合条件的左孩子
root->right = trimBST(root->right, low, high);//root->right接入符合条件的右孩子
return root;
}
};
第二题、将有序数组转换为二叉树 LeetCode108 https://leetcode.cn/problems/convert-sorted-array-to-binary-search-tree/
首先是传入数组,然后就是左下标left和右下标right,我们在二叉树:构造二叉树登场! (opens new window)中提过,在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组。
所以代码如下:
// 左闭右闭区间[left, right]
TreeNode* traversal(vector<int>& nums, int left, int right)
这里注意,我这里定义的是左闭右闭区间,在不断分割的过程中,也会坚持左闭右闭的区间,这又涉及到我们讲过的循环不变量。
class Solution {
public:
TreeNode* traversal(vector<int>& nums, int left, int right){
if(left > right) return NULL;
int mid = left + ((right - left) / 2);
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = traversal(nums, 0, nums.size() - 1);
return root;
}
};
第三题、把二叉搜索树转换为累加树LeetCode538 https://leetcode.cn/problems/convert-bst-to-greater-tree/
这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。
那么有序的元素如何求累加呢?
其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。
为什么变成数组就是感觉简单了呢?
因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。
那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了。
#递归
遍历顺序如图所示:
本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。
class Solution {
public:
int pre = 0;
void traversal(TreeNode* cur){
if(cur == NULL) return;
traversal(cur->right);//右
cur->val += pre;//中
pre = cur->val;
traversal(cur->left);//左
return;
}
TreeNode* convertBST(TreeNode* root) {
pre = 0;
traversal(root);
return root;
}
};