代码随想录打卡Day23| 二叉树part09

 心得:

在删除节点并调整二叉树结构的题目中,是要把要删除节点符合条件的孩子返回,赋值,再设置成根节点的孩子。

通过数组构造二叉树的题目,,需要分割数组,可以同left和right来定义左右区间,当然需要注意区间的开闭。用left和right得出mid来分割区间。



第一题、修剪二叉搜索树 LeetCode669  https://leetcode.cn/problems/trim-a-binary-search-tree/submissions/

把要删除节点符合条件的孩子返回,赋值,再设置成根节点的孩子。

class Solution {
public:
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == NULL) return NULL;
        if(root->val < low){
            //把要删除节点符合边界的右孩子返回
            TreeNode* right = trimBST(root->right, low, high);
            return right;
        }
        if(root->val > high){
            //把要删除节点符合边界的左孩子返回
            TreeNode* left = trimBST(root->left, low, high);
            return left;
        }
        root->left = trimBST(root->left, low, high);// root->left接入符合条件的左孩子
        root->right = trimBST(root->right, low, high);//root->right接入符合条件的右孩子
        return root;
    }
};

 



第二题、将有序数组转换为二叉树 LeetCode108 https://leetcode.cn/problems/convert-sorted-array-to-binary-search-tree/

 首先是传入数组,然后就是左下标left和右下标right,我们在二叉树:构造二叉树登场! (opens new window)中提过,在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组。

所以代码如下:

// 左闭右闭区间[left, right]
TreeNode* traversal(vector<int>& nums, int left, int right)

这里注意,我这里定义的是左闭右闭区间,在不断分割的过程中,也会坚持左闭右闭的区间,这又涉及到我们讲过的循环不变量

class Solution {
public:
    TreeNode* traversal(vector<int>& nums, int left, int right){
        if(left > right) return NULL;
        int mid = left + ((right - left) / 2);
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = traversal(nums, left, mid - 1);
        root->right = traversal(nums, mid + 1, right);
        return root;
    }
    
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        TreeNode* root = traversal(nums, 0, nums.size() - 1);
        return root;
    }
};


第三题、把二叉搜索树转换为累加树LeetCode538 https://leetcode.cn/problems/convert-bst-to-greater-tree/

这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。

那么有序的元素如何求累加呢?

其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。

为什么变成数组就是感觉简单了呢?

因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。

那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了

#递归

遍历顺序如图所示:

538.把二叉搜索树转换为累加树

本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

class Solution {
public:
    int pre = 0;
    void traversal(TreeNode* cur){
        if(cur == NULL) return;
        traversal(cur->right);//右
        cur->val += pre;//中
        pre = cur->val;
        traversal(cur->left);//左
        return;
    }
    
    TreeNode* convertBST(TreeNode* root) {
        pre = 0;
        traversal(root);
        return root;
    }
};

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值