代码随想录打卡 Day 48 | 动态规划 part09

心得:

打家劫舍问题

第一题、注意递推公式确定之后,是根据递推公式来确定初始化

第二题、本题的难点在于房子是环形的,第一个和最后一个不能共存。因此分别考虑去掉第一个和去掉最后一个然后取最大就可以。 

第三题、用一个长度为2的数组来表示每一个节点的状态,去这个结点的值就用数组的第1位,不取就用这个数组的第2位。



第一题、打家劫舍 LeetCode https://leetcode.cn/problems/house-robber/description/

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

dp数组含义:考虑数组下标i的话,最大的价值是多少

递推公式:如果选i,那么是dp[i - 2] + nums[i]; 如果不选i, 就是dp[i - 1]

初始化:dp[0] = nums[0], dp[1] = max(nums[0], nums[1]) 

遍历顺序:从左往右

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for(int i = 2; i < nums.size(); i++){
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[nums.size() - 1];

    }
};


第二题、打家劫舍-2 LeetCode213 https://leetcode.cn/problems/house-robber-ii/description/

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

 本题的难点在于房子是环形的,第一个和最后一个不能共存。因此分别考虑去掉第一个和去掉最后一个然后取最大就可以。 

class Solution {
public:
    int rob(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        if(nums.size() == 1) return nums[0];

        int result1 = robRange(nums, 0, nums.size() - 2);
        int result2 = robRange(nums, 1, nums.size() - 1);
        return max(result1, result2);
              
    }

    int robRange(vector<int>& nums, int start, int end){
        if(end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for(int i = start + 2; i <= end; i++){
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};


第三题 打家劫舍-3 LeetCode 337 https://leetcode.cn/problems/house-robber-iii/description/

 

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:

输入: root = [3,2,3,null,3,null,1]
输出: 7 
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7

 

本题需要将二叉树的递归算法和动态规划结合。

本题用一个长度为2的数组表示每一个节点的偷与不偷的两个状态所得到的金钱

这样在递归的时候,通过后序遍历,就可以从下往上,遍历出来每一个节点能获得的最大金钱值。

 

 递归四部曲:

1.确定递归函数参数和返回值:参数是

vector<int> robTree(TreeNode* cur) {

2.确定终止条件:遇到空节点,返回{0,0}

3.确定遍历顺序:后序遍历,先左后右

4.确定单层递归逻辑:

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};

整体代码: 

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> res = robTree(root);
        return max(res[0], res[1]);
    }

    vector<int> robTree(TreeNode* cur){
        if(cur == NULL) return vector<int> {0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);

        int val1 = cur->val + left[0] + right[0];
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);

        //return {val1, val2};
        //取在1,不取在2
        return {val2, val1};
    }
};

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值