代码随想录打卡Day45 | 动态规划part07

心得:

第一题背包问题,之前用斐波那契数列的方法做过,其实也可以转换为完全背包。

注意初始化:既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

第二题、重点:完全背包在于其物品无线,所以遍历顺序是怎么样的,而不是递推公式!!!

这道题要求最少硬币数,因此递推公式dp[j] = min(dp[j - coins[i]] + 1; dp[j])

第三题:想不清楚的就是平方数也能够该怎么表示出来,其实在遍历物品的时候,用i * i <= n,然后在递推公式中用dp[j - i * i]就可以了。 



第一题 爬楼梯 LeetCode 70 https://leetcode.cn/problems/climbing-stairs/description/

 

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

 dp定义:台阶数为n,有dp[n]种方法上去。

递推公式:dp[i] += dp[i - j]

初始化:既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

遍历顺序:是排列,所以先背包后物品。从左到右

class Solution {
public:
    int climbStairs(int n) {
        vector<int> dp(n + 1, 0);
        dp[0] = 1;

        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= 2; j++){
                if(i >= j) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
};

 



第二题、零钱兑换 LeetCode 322 https://leetcode.cn/problems/coin-change/description/

 

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

dp数组含义:dp[]

递推公式:重点:完全背包在于其物品无线,所以遍历顺序是怎么样的,而不是递推公式!!!

这道题要求最少硬币数,因此递推公式dp[j] = min(dp[j - coins[i]] + 1; dp[j])

初始化:首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值。

 遍历顺序:本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

所以本题并不强调集合是组合还是排列。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;

        for(int i = 0; i < coins.size(); i++){
            for(int j = coins[i]; j <= amount; j++){
                if(dp[j - coins[i]] != INT_MAX){
                    dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
                }               
            }
        }
        if(dp[amount] == INT_MAX) return -1;
        return dp[amount];
    }
};

 



第三题、完全平方数 LeetCode279 https://leetcode.cn/problems/perfect-squares/description/

 

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

这一题让我想不清楚的就是平方数也能够该怎么表示出来,其实在遍历物品的时候,用i * i <= n,然后在递推公式中用dp[j - i * i]就可以了。 

dp数组:到达j这个数需要的最少平方数个数

递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j])

初始化:dp[0] = 0

遍历顺序:先物品后背包(反过来其实也可以) 

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n + 1, INT_MAX);
        dp[0] = 0;
        // for(int i = 1; i * i <= n; i++){
        //     for(int j = 1; j <= n; j++){

        //     }
        // }
        for(int i = 1; i * i <= n; i++){
            for(int j = i * i; j <= n; j++){
                dp[j] = min(dp[j - i * i] + 1, dp[j]);
            }
        }
        return dp[n];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值