【C/C++】拉格朗日插值、牛顿插值、分段线性插值作业


本文只是完成作业,重点是比较三种插值过程和结果的特点(略),主函数(略),不考虑太多健壮性,也不批量插值。

创建项目

  1. 使用VS2019创建C++控制台应用

    C++菜鸟教程

拉格朗日插值

公式

n次的拉格朗日插值多项式: L n ( x ) = ∑ k = 0 n [ y k ∏ i = 0 , i ≠ k n ( x − x i x k − x i ) ] L_n(x)=\displaystyle\sum_{k=0}^{n}[y_k\displaystyle\prod_{i=0,i≠k}^{n}(\frac{x-x_i}{x_k-x_i})] Ln(x)=k=0n[yki=0,i=kn(xkxixxi)]

其中,已知点有n+1个,其x值依次为 x 0 x_0 x0 x 1 x_1 x1、… x i x_i xi(或 x k x_k xk)、… x n x_n xn,其y值同理。

当取n=1时,为线性插值;当取n=2时,为抛物插值。

思路

1.编程前,令上述公式中的n取n-1,于是公式为: L n − 1 ( x ) = ∑ k = 0 n − 1 [ y k ∏ i = 0 , i ≠ k n − 1 ( x − x i x k − x i ) ] L_{n-1}(x)=\displaystyle\sum_{k=0}^{n-1}[y_k\displaystyle\prod_{i=0,i≠k}^{n-1}(\frac{x-x_i}{x_k-x_i})] Ln1(x)=k=0n1[yki=0,i=kn1(xkxixxi)]

2.这样编写的程序函数中,接收的形参包含四个部分:

  • x值的数组
  • y值得数组
  • 点数n
  • 插值位置x

3.返回参数:

  • 插值结果y

4.数据类型选择:double

5.为了对比不同插值方法的效率和结果,不建立额外的“缓存”

代码

参考博客1可能有用的博客2(python版)

double lagrange(double arrX[], double arrY[], int n, double x)
{
	int k, i;
	double temp;
	double y = 0;
	for (k = 0; k < n; k++)
	{
		temp = 1;
		for (i = 0; i < n; i++)
		{
			if (i != k) {
				temp *= ((x - arrX[i]) / (arrX[k] - arrX[i]));
			}
		}
		y += arrY[k] * temp;
	}
	return y;
}

特点

优点:直观、简单、应用广泛。
缺点:当插值精度不够,增加新节点时,必须从头计算,不能利用已有结果。

牛顿插值

为克服拉格朗日插值的缺点,实现灵活增加插值节点,以节省运算次数。

参考博客1

公式

N n ( x ) = f ( x 0 ) + ∑ i = 1 n [ ∏ k = 0 i − 1 ( x − x i ) ] f [ x 0 , x 1 , . . . , x i ] N_n(x)=f(x_0)+\displaystyle\sum_{i=1}^{n}[\displaystyle\prod_{k=0}^{i-1}({x-x_i})]f[x_0,x_1,...,x_i] Nn(x)=f(x0)+i=1n[k=0i1(xxi)]f[x0,x1,...,xi]

思路

  1. 根据已知数据的个数n,建立差商表,表内共需要存储 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)个差商值。
  2. 根据差商表,将插值数据代入公式。

代码

计算差商表:

//计算差商表,n表示有n个节点,n>1,f为差商表数组
void calcChaShang(double x[], double y[], double f[], int n)
{ 
	int i, j, k = 0;
	//一阶差商计算
	for (i = 0; i < n - 1; i++)
	{
		f[k++] = (y[i] - y[i + 1]) / (x[i] - x[i + 1]);
	}

	//在一阶差商的基础上,计算到n-1阶
	for (i = 1; i < n - 1; i++)
	{
		//j用来遍历第i阶的所有差商(共有n-i个)
		for (j = 0; j < n - i - 1; j++)
		{
			//调试时所用
			/*double y1 = f[k - (n - i)];
			double y2 = f[k - (n - i) + 1];
			double x1 = x[j];
			double x2 = x[j + i + 1];*/
			//由于k自增会影响y[],所以y[]中的j可以去掉,否则错误写法:
			//f[k] = (f[k - (n - i) + j] - f[k - (n - i) + j + 1]) / (x[j] - x[j + i + 1]);
			f[k] = (f[k - (n - i)] - f[k - (n - i) + 1]) / (x[j] - x[j + i + 1]);
			k++;
		}
	}
}

基于差商表的牛顿插值:

double newvalue(double* xArr, double* yArr, double* f, int n, double x)
{ 
	//将连乘结果存储到数组中(multiplication)
	double *m = (double*)malloc(sizeof(double) * n);
	m[0] = 1.0;
	int i = 0;
	for (i = 0; i < n - 1; i++)
	{
		m[i + 1] = m[i] * (x - xArr[i]);
	}
		
	//最终计算
	int k = 0;//通过此下标,访问差商数组
	double y = yArr[0];
	for (i = 1; i < n; i++) 
	{
		y += m[i] * f[k];
		k += n - i;
	}
	return y;
}

线性分段插值

公式

在区间[a,b],划分 a = x 0 < x 1 < x 2 < . . . < x n = b a=x_0<x_1<x_2<...<x_n=b a=x0<x1<x2<...<xn=b,对于[a,b]之间的任一小区间 [ x j − 1 , x j ] [x_{j-1},x_j] [xj1,xj],在该小区间上作线性插值:

f ( x ) ≈ L 1 ( x ) = y j − 1 x − x j x j − 1 − x j + y j x − x j − 1 x j − x j − 1 f(x)≈L_1(x)=y_{j-1}\frac{x-x_j}{x_{j-1}-x_j}+y_j\frac{x-x_{j-1}}{x_j-x_{j-1}} f(x)L1(x)=yj1xj1xjxxj+yjxjxj1xxj1

思路

  1. 已知数据的x值需要从小到大排列。
  2. 插值前先找到被插数据x值所在的分段,通过比较 x x x x j − 1 x_{j-1} xj1的值,找到其所在的小区间 [ x j − 1 , x j ] [x_{j-1},x_j] [xj1,xj]中的j的值。
  3. 找到j,代入公式。

代码

double linear(double xArr[], double yArr[], int n, double x) 
{
	int j;
	double y = 0;
	bool noFound = true;

	//如果是左边外插
	if (x <= xArr[0])
	{
		j = 0;
	}
	//如果是右边外插
	else if (x >= xArr[n - 1])
	{
		j = n - 2;
	}
	//内插
	else
	{
		for (j = 1; j < n; j++)
		{
			//找到所在的分段
			if (x <= xArr[j])
			{
				j--;
				break;
			}
		}
	}

	y = yArr[j] * ((x - xArr[j + 1]) / (xArr[j] - xArr[j + 1]))
		+ yArr[j + 1] * ((x - xArr[j]) / (xArr[j + 1] - xArr[j]));
	return y;
}

参考

公式来自《数值计算方法及其应用》(朱长青编著,科学出版社)

分段线性插值C++代码: ```c++ #include <iostream> #include <vector> using namespace std; double linearInterpolation(double x, vector<double> X, vector<double> Y) { int n = X.size(); for (int i = 0; i < n - 1; i++) { if (x >= X[i] && x <= X[i+1]) { double y = Y[i] + (Y[i+1] - Y[i]) / (X[i+1] - X[i]) * (x - X[i]); return y; } } return 0; } int main() { vector<double> X = {1, 2, 3, 4, 5}; vector<double> Y = {2, 4, 5, 4, 1}; double x = 2.5; double y = linearInterpolation(x, X, Y); cout << "x = " << x << ", y = " << y << endl; return 0; } ``` 分段二次插值C++代码: ```c++ #include <iostream> #include <vector> using namespace std; double quadraticInterpolation(double x, vector<double> X, vector<double> Y) { int n = X.size(); for (int i = 0; i < n - 1; i++) { if (x >= X[i] && x <= X[i+1]) { double x1 = X[i], x2 = X[i+1]; double y1 = Y[i], y2 = Y[i+1]; double a = (y1 - y2) / (x1 - x2) / (x1 - x2); double b = -2 * a * x1; double c = y1 - a * x1 * x1 - b * x1; double y = a * x * x + b * x + c; return y; } } return 0; } int main() { vector<double> X = {1, 2, 3, 4, 5}; vector<double> Y = {2, 4, 5, 4, 1}; double x = 2.5; double y = quadraticInterpolation(x, X, Y); cout << "x = " << x << ", y = " << y << endl; return 0; } ``` 全区间拉格朗日插值C++代码: ```c++ #include <iostream> #include <vector> using namespace std; double lagrangeInterpolation(double x, vector<double> X, vector<double> Y) { int n = X.size(); double y = 0; for (int i = 0; i < n; i++) { double Li = 1; for (int j = 0; j < n; j++) { if (i != j) { Li *= (x - X[j]) / (X[i] - X[j]); } } y += Li * Y[i]; } return y; } int main() { vector<double> X = {1, 2, 3, 4, 5}; vector<double> Y = {2, 4, 5, 4, 1}; double x = 2.5; double y = lagrangeInterpolation(x, X, Y); cout << "x = " << x << ", y = " << y << endl; return 0; } ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值