自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 Effective C++阅读笔记1

第四章 设计与声明条款18让接口容易被正确使用,不易被误用;①重定义接口的类型,比如:Data(int day, int month, int year);替换为:Data(Day d, Month m, Year y);这样的好处在于较好的防止输入顺序出错;可以对各类型加入束缚值,进一步预防调用出错,比如Month类别只允许1-12之间的整数类型;②保持接口的一致性,以及类型与内置类...

2020-02-05 16:38:45 205

原创 tensorflow学习笔记1-—mnist全连接模型

from tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot = True)//读入数据import tensorflow as tfsess = tf.InteractiveSession()x = tf.plac

2018-02-03 10:47:44 325

转载 训练集(trainning set),测试机(testing set),验证集(validation set)

1.交叉验证交叉验证是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize)。2.训练集,验证集(注意区别交叉验证数据集),测试集一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。但是,有时候模型的构建过程中也需要检验模型,辅助模型构建,所以会将训练数据在分为两个部分:1)训练数据;2)验证数据(V

2018-01-23 14:09:52 2485 1

原创 DFS算法实例

题目描述 小赛非常喜欢玩游戏,最近喜欢上了一个接金币的游戏。在游戏中,使用帽子左右移动接金币,金币接的越多越好,但是金币掉到地上就不能再接了。为了方便问题的描述,我们把电脑屏幕分成11格,帽子每次能左右移动一格。现在给电脑屏幕如图标上坐标:也就是说在游戏里,金币都掉落在0-10这11个位置。开始时帽子刚开始在5这个位置,因此在第一秒,帽子只能接到4,5,6这三个位置中其中一个位置

2018-01-05 13:20:01 920

原创 学习总结

1机器学习1.1 逻辑回归:分析因变量y取某个值的概率与自变量x的关系,0Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是否患有某种病。 在讲解Logistic回归理论之前,我们先从LR分类器

2017-12-12 14:23:54 381

转载 python数据类型

python常用数据类型 及其方法

2017-12-08 19:26:40 259

原创 机器学习—第四周—作业2—用深度神经网络分类图像

Deep Neural Network for Image Classification: ApplicationWhen you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this cour

2017-12-01 15:45:58 954

原创 机器学习-第四周作业——构建深度神经网络

Building your Deep Neural Network: Step by StepWelcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will

2017-12-01 15:43:51 1158

原创 机器学习-第二周-第一次作业 numpy基础

Python Basics with Numpy (optional assignment)Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you've used Python before, this will help familiarize

2017-12-01 15:41:22 910

原创 深度学习与神经网络-吴恩达-第一周 梯度检查

Gradient CheckingWelcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking.You are part of a team working to make mobile payments av

2017-12-01 15:26:07 770

原创 深度学习与神经网络-吴恩达-第一周 正则化

RegularizationWelcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity thatoverfitting can be a serious problem, if the training dataset is not big

2017-12-01 15:24:32 477

原创 深度学习与神经网络-吴恩达-第三周 TensorFlow入门

TensorFlow TutorialWelcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framework that will allow

2017-12-01 15:16:03 1186

转载 常用的数据集——machine learning

1. CIFAR-10 & CIFAR-100    CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像。    (类别:airplane,automobile, bird, cat, deer, dog, frog, horse, ship, truck)    (作者:Alex Krizhevsky, Vinod Nair,

2017-11-29 10:57:35 881

翻译 深度学习与神经网络-吴恩达-第二周优化算法

一、Mini-batch梯度下降法前面介绍的向量化方法能够让我们高效的处理m个样本数据,模型输入的也就是m个样本按列堆叠而成的矩阵X,同样地,输入数据的标签也是m个样本标签按列堆叠而成的矩阵Y。但是以海量训练样本(m很大,几百万甚至几千万的数据量)作为输入的话,这样做的计算成本依然会很高。因为只有处理完所有的训练样本才能进行一次梯度下降法,然后还需要重新处理所有的训练数据才能进行下一步

2017-11-29 09:56:16 552

转载 CNN神经网络学习疑惑

问题1:CNN升神经网络中,每个卷积核是在整幅输入图像上做卷积吗?是的问题2:权值共享,是同一层的每一个卷积核相同吗?不是,权值共享的意思是,同一个feature map 中的权值相同,feature map通过卷积核卷积后的输出乘以权值获得。以下博文摘自“萌面女xia”该博文详细的解释了上述疑惑

2017-11-27 21:02:55 461

转载 CNN神经网络解释,及MNIST实例详注

在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下。首先介绍原理部分。       通过一个图像分类问题介绍卷积神经网络是如何工作的。下面是卷积神经网络判断一个图片是否包含“儿童”的过程,包括四个步骤:图像输入(InputImage)→卷积(Convolution)→最大池化(MaxPooling)→全连接神经网络(Fully-ConnectedNeural

2017-11-27 19:38:46 2142

翻译 神经网络—正则化实例

通过实例,说明L2正则化方法,以及DROPOUT正则化方法的作用,两者都能减轻过拟合问题,即降低方差过高的问题。

2017-11-22 10:49:39 1484

转载 CNN卷积神经网络

上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是车 那是什么车所以最左边是数据输入层,对数据做一些处理,比如去均值(把输入数据各个维度都中心化为0,避免数据过多偏差,影响训练效果)、归一化(把所有的数据都归一到同样的范围)、PCA/白化等等。CNN只对训练集做“去均值”这一步。中间是CON

2017-11-18 11:48:19 391

原创 感知器数据分类算法

收获:输入数据与神经元链接比喻做电信号在两个神经元的多个树突之间传输、将权重系数w比喻为各个神经元的传递强弱,当到达细胞核的时候进行求和,既np.dot(W,X)从细胞核传入下一个神经元的时候,用激活函数对信号再处理一遍;图片摘自  慕课网“机器学习-实现简单的神经网络”

2017-11-15 14:49:48 1116

原创 机器学习—第二周作业—logistics regression

Logistic Regression with a Neural Network mindsetWelcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step

2017-11-13 16:02:53 890

原创 机器学习—第三周作业—平面线性分类

通过本次作业,可以掌握一般神经网络模型构建方法,以及学习怎么使用神经网络模型。

2017-11-13 15:33:21 855

翻译 机器学习——神经网络模型构建方法

本文介绍了一般神经网络模型构建方法,并给出了python源码

2017-11-13 14:22:57 4184

原创 cany边缘检测算法(坎尼算法)

预备知识:图像梯度:在一幅图像f(x,y)位置处寻找的边缘强度和方向,所选工具就是梯度。grad(f)=[Gx,Gy]T=

2017-10-26 10:48:14 6672

原创 c++ 继承

基类与派生类的转换公有派生类对象可以当作基类对象使用,反之则不行;派生类对象可以隐含的转换为基类对象派生类对象可以初始化为基类的引用派生类的指针可以隐含转换为基类的指针派生类构造函数如果派生类不新增数据成员,可以通过继承派生类构造函数;使用语句using B::B;B为类名如果不继承基类构造函数,则:派生类新增数据成员,由派生类构造函数初始化

2017-10-22 16:38:36 184

原创 数据结构—线性表

链表单链表常用操作:1、在第i个节点后插入一个节点主要思想:找到第i个节点的地址、及第i+1个节点的地址nodelink p,temp;           //创建两个指针p=head;for(int j=1;j{   p=p.next;                  if(p==NULL)      //指针为空,则不存在该节点

2017-10-05 09:29:54 180

原创 程序组织形式

C语言中,程序可分成三个部分1、头文件:包含结构声明、和 使用这些结构的函数原型(函数声明);2、源代码文件:包含与结构有关的函数代码;3、主程序源代码文件:包含调用与结构相关的函数的代码;注意:头文件中不能放函数定义、变量声明,否则当在其他两个文件中包含该头文件会出现同一个程序包含一个函数的两个定义。在一个文件中只能将同一个头文件包含一次。但可能在使用

2017-10-03 12:23:11 544

原创 哈希查找

哈希查找时通过建立被查找元素(key)与其存储位置的函数关系f,根据address=f(key),查找的方法。哈希查找包括两个步骤:1、建立哈希表(也可以说建立哈希函数)2、处理地址冲突常用于的哈希函数有:除数留余法、平方取中法、直接定址法等常用解决地址冲突的方法有:开放地址法h=(h(key)+d);链地址法;

2017-10-02 15:56:10 321

原创 c++ 基础

命名空间可以包含 类、函数、变量声明语句的作用: int i;  ①指定存储空间的大小及存储数据类型; ②指定存储空间的位置标签为i;类:

2017-08-26 13:34:17 231

原创 数字图像的傅里叶变换笔记

数字图像的傅里叶变换,得到图像的频谱图,图中的像素值表示在u,v频率分量下的幅值大小傅里叶变换的频谱图包含图像的灰度信息;相谱图包含位置信息;

2017-08-06 16:39:32 490

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除