机器学习
liqing19
这个作者很懒,什么都没留下…
展开
-
机器学习——神经网络模型构建方法
本文介绍了一般神经网络模型构建方法,并给出了python源码翻译 2017-11-13 14:22:57 · 4184 阅读 · 0 评论 -
CNN神经网络解释,及MNIST实例详注
在知乎上看到一段介绍卷积神经网络的文章,感觉讲的特别直观明了,我整理了一下。首先介绍原理部分。 通过一个图像分类问题介绍卷积神经网络是如何工作的。下面是卷积神经网络判断一个图片是否包含“儿童”的过程,包括四个步骤:图像输入(InputImage)→卷积(Convolution)→最大池化(MaxPooling)→全连接神经网络(Fully-ConnectedNeural转载 2017-11-27 19:38:46 · 2143 阅读 · 0 评论 -
学习总结
1机器学习1.1 逻辑回归:分析因变量y取某个值的概率与自变量x的关系,0Logistic回归为概率型非线性回归模型,是研究二分类观察结果与一些影响因素之间关系的一种多变量分析方法。通常的问题是,研究某些因素条件下某个结果是否发生,比如医学中根据病人的一些症状来判断它是否患有某种病。 在讲解Logistic回归理论之前,我们先从LR分类器原创 2017-12-12 14:23:54 · 381 阅读 · 0 评论 -
深度学习与神经网络-吴恩达-第三周 TensorFlow入门
TensorFlow TutorialWelcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framework that will allow原创 2017-12-01 15:16:03 · 1186 阅读 · 0 评论 -
深度学习与神经网络-吴恩达-第一周 正则化
RegularizationWelcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity thatoverfitting can be a serious problem, if the training dataset is not big原创 2017-12-01 15:24:32 · 477 阅读 · 0 评论 -
深度学习与神经网络-吴恩达-第一周 梯度检查
Gradient CheckingWelcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking.You are part of a team working to make mobile payments av原创 2017-12-01 15:26:07 · 770 阅读 · 0 评论 -
机器学习—第三周作业—平面线性分类
通过本次作业,可以掌握一般神经网络模型构建方法,以及学习怎么使用神经网络模型。原创 2017-11-13 15:33:21 · 855 阅读 · 0 评论 -
机器学习—第二周作业—logistics regression
Logistic Regression with a Neural Network mindsetWelcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step原创 2017-11-13 16:02:53 · 892 阅读 · 0 评论 -
机器学习—第四周—作业2—用深度神经网络分类图像
Deep Neural Network for Image Classification: ApplicationWhen you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this cour原创 2017-12-01 15:45:58 · 954 阅读 · 0 评论 -
机器学习-第四周作业——构建深度神经网络
Building your Deep Neural Network: Step by StepWelcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will原创 2017-12-01 15:43:51 · 1158 阅读 · 0 评论 -
机器学习-第二周-第一次作业 numpy基础
Python Basics with Numpy (optional assignment)Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you've used Python before, this will help familiarize原创 2017-12-01 15:41:22 · 910 阅读 · 0 评论 -
CNN神经网络学习疑惑
问题1:CNN升神经网络中,每个卷积核是在整幅输入图像上做卷积吗?是的问题2:权值共享,是同一层的每一个卷积核相同吗?不是,权值共享的意思是,同一个feature map 中的权值相同,feature map通过卷积核卷积后的输出乘以权值获得。以下博文摘自“萌面女xia”该博文详细的解释了上述疑惑转载 2017-11-27 21:02:55 · 462 阅读 · 0 评论 -
深度学习与神经网络-吴恩达-第二周优化算法
一、Mini-batch梯度下降法前面介绍的向量化方法能够让我们高效的处理m个样本数据,模型输入的也就是m个样本按列堆叠而成的矩阵X,同样地,输入数据的标签也是m个样本标签按列堆叠而成的矩阵Y。但是以海量训练样本(m很大,几百万甚至几千万的数据量)作为输入的话,这样做的计算成本依然会很高。因为只有处理完所有的训练样本才能进行一次梯度下降法,然后还需要重新处理所有的训练数据才能进行下一步翻译 2017-11-29 09:56:16 · 553 阅读 · 0 评论 -
神经网络—正则化实例
通过实例,说明L2正则化方法,以及DROPOUT正则化方法的作用,两者都能减轻过拟合问题,即降低方差过高的问题。翻译 2017-11-22 10:49:39 · 1485 阅读 · 0 评论 -
感知器数据分类算法
收获:输入数据与神经元链接比喻做电信号在两个神经元的多个树突之间传输、将权重系数w比喻为各个神经元的传递强弱,当到达细胞核的时候进行求和,既np.dot(W,X)从细胞核传入下一个神经元的时候,用激活函数对信号再处理一遍;图片摘自 慕课网“机器学习-实现简单的神经网络”原创 2017-11-15 14:49:48 · 1116 阅读 · 0 评论 -
CNN卷积神经网络
上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是车 那是什么车所以最左边是数据输入层,对数据做一些处理,比如去均值(把输入数据各个维度都中心化为0,避免数据过多偏差,影响训练效果)、归一化(把所有的数据都归一到同样的范围)、PCA/白化等等。CNN只对训练集做“去均值”这一步。中间是CON转载 2017-11-18 11:48:19 · 391 阅读 · 0 评论 -
训练集(trainning set),测试机(testing set),验证集(validation set)
1.交叉验证交叉验证是一种评估统计分析、机器学习算法对独立于训练数据的数据集的泛化能力(generalize)。2.训练集,验证集(注意区别交叉验证数据集),测试集一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。但是,有时候模型的构建过程中也需要检验模型,辅助模型构建,所以会将训练数据在分为两个部分:1)训练数据;2)验证数据(V转载 2018-01-23 14:09:52 · 2485 阅读 · 1 评论