经典款动态规划题,偶尔遇见了所以写一下,这个基础上的提高版可以看一下我的这篇博客小A点菜
题目描述
有n件物品,每件物品的重量为t[i],价值为val[i]。现有一个容量为V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中
每种物品都只有一件。
令dp[i][j]来表示前i件物品装入容量为j的背包所能得到的最大总价值。
题解
分解成子问题,缩小原问题,然后运用动态转移方程
dp[i][j]=max(dp[i-1][j],dp[i-1][j-t[i]]+val[i]
即每个物品选或不选里取最大值
#include<bits/stdc++.h>
using namespace std;
int n,v,t[10],val[10],dp[10][10];// 这里就不需要设边界为0 宏定义数组里均为0
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
cin>>t[i];
for(int i=1;i<=n;i++)
cin>>val[i];
for(int i=1;i<=n;i++)
{
for(int j=0;j<=v;j++)
{
if(j>=t[i]) //可以放下第i件物品
{
dp[i][j]=max(dp[i-1][j],dp[i-1][j-t[i]]+val[i]); //放或不放里取最大
}
else
dp[i][j]=dp[i-1][j]; //放不下则数量不变
}
}
cout<<dp[n][v];
}
然后可以进行简化dp成一维数组
细心的一定发现刚才用的dp数组得空间是一个N*v的,如果N和v都比较大的情况下,有的题目的内存空间不给你很多,如果继续开辟这么大的数组会报内存超限的错误
下面将会说到怎么把N×v的dp 数组压缩成W大小的空间:
我们可以看到,要想得到 dp[i][j],我们需要知道 dp[i - 1][j] 和 dp[i - 1][j - t[i]],由于我们使用二维数组保存中间状态,所以可以直接取出这两个状态。
大家有没有发现第 i 个物品的是由第 i - 1个物品推出来的,也就是刚才让大家比对的那个表格,你要仔细的走了一遍那个表格,一定会发现,第i行的填充是由第i - 1行推出来的,如果建立一个数组dp[ j ] 那么如果当 i = 2,dp[j]数组存储的是当i=1时候&&背包还可承受重量为v时候的价值,那么咱们就可以直接利用dp[j],作为i - 1时候的价值,但要注意一点,在遍历重量的之后,为了保证当改变dp[j]时,不会影响后面对dp[j]的计算,咱们枚举重量的时候是从大到小枚举的。所以递推方程改为:
1、dp[j] = dp[j] // 不加入第i个物品
2、dp[j] = dp[j - t[i]] + val[i] // 加第i个物品
所以:dp[j] = max( dp[j] , dp[j - t[i]] + val[i] )
#include<bits/stdc++.h>
using namespace std;
int n,v,t[10],val[10],dp[10];// 这里就不需要设边界为0 宏定义数组里均为0
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
cin>>t[i];
for(int i=1;i<=n;i++)
cin>>val[i];
for(int i=1;i<=n;i++)
{
for(int j=v;j>=t[i];j--)
{
dp[j]=max(dp[j],dp[j-t[i]]+val[i]); //放或不放里取最大
}
}
cout<<dp[v];
}