33. 搜索旋转排序数组
整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0
输出:-1
提示:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
中的每个值都 独一无二- 题目数据保证
nums
在预先未知的某个下标上进行了旋转 -104 <= target <= 104
思路:对于有序数组,二分查找的效率是比较高的。而该题是对有序数组的旋转,则存在部分有序,而二分查找依然是有效的,只不过要增加判断的条件。
- 如果 [l, mid - 1] 是有序数组,且 target 的大小满足 [ nums[ l ],nums[ mid ] ],则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。
- 如果 [mid, r] 是有序数组,且 target 的大小满足 [ nums[ mid+1 ], nums[ r ]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。
代码:
int search(int* nums, int numsSize, int target){
if(numsSize == 0)
return -1;
if(numsSize == 1)
return nums[0] == target ? 0 : -1;
int left = 0, right = numsSize - 1;
while(left <= right)
{
int mid = (left + right) >> 1;
if(nums[mid] == target)
return mid;
if(nums[mid] >= nums[0]) //左边有序
{
//target在左边有序区间
if(nums[mid] >= target && target >= nums[0])
{
right = mid - 1;
}
//target不在有序区间
else
{
left = mid + 1;
}
}
else //左边无序或部分有序
{
//右边有序且target在右边有序区间
if(nums[mid] <= target && target <= nums[numsSize - 1])
{
left = mid + 1;
}
//target不在右边的有序区间
else
{
right = mid - 1;
}
}
}
return -1;
}