方法一:使用两个list分别记录行列上需要置零的行列的index,最差情况的空间复杂度为O(m+n)
class Solution:
def setZeroes(self,matrix):
rows=len(matrix)
cols=len(matrix[0])
row_index=[]
col_index=[]
for row in range(rows):
for col in range(cols):
if matrix[row][col]==0:
row_index.append(row)
col_index.append(col)
for row in row_index:
matrix[row]=[0]*cols
for col in col_index:
for row in range(rows):
matrix[row][col]=0
方法二(常数空间复杂度):把行列置零记录的list的功能,直接放到原来矩阵的第一行和第一列,在遍历元素的时候把需要置零的行在第一列对应位置置零,需要置零的列在第一行对应位置置零,后续再根据第一行和第一列的标记补零。
这里存在的问题是,第一行和第一列本来存在的零和后来补上的零会混淆,原来的零具备一个功能是把第一行和第一列置零,所以在一开始的时候,需要遍历第一行和第一列,确定是否有零。然后在最后对第一行和第一列进行置零操作。
class Solution:
def setZeroes(self,matrix):
rows=len(matrix)
cols=len(matrix[0])
row_zero=False
col_zero=False
for i in matrix[0]:
if i==0:
row_zero=True
for j in range(rows):
if matrix[j][0]==0:
col_zero=True
for row in range(1,rows):
for col in range(1,cols):
if matrix[row][col]==0:
matrix[row][0]=0
matrix[0][col]=0
for row in range(1,rows):
if matrix[row][0]==0:
matrix[row]=[0]*cols
for col in range(1,cols):
if matrix[0][col]==0:
for row in range(1,rows):
matrix[row][col]=0
if row_zero:
matrix[0]=[0]*cols
if col_zero:
for row in range(rows):
matrix[row][0]=0