语义分割预测结果解决方案

文章讲述了如何解决在使用DeepLabV3+进行二分类任务时,由于标签格式不匹配导致的预测问题。作者提供了将0-255彩色标签转化为只有0和1的标签的Python代码示例,适用于裂缝识别等场景。
摘要由CSDN通过智能技术生成

deeplabv3+预测结果问题解决:


问题描述

详细问题见上一篇文章https://blog.csdn.net/lisahaomei/article/details/136680857?spm=1001.2014.3001.5501

原因分析:

针对数据集标签,分为像素只有0和1的图,这种标签全黑;然后是0-255的彩色图。根据需求使用这两种标签,我这里需要用0和1的图,而我用了0-255的彩图,所以无法预测结果。

像素只有0,1的图:
在这里插入图片描述

像素0和38的彩图:
在这里插入图片描述

解决方案:

针对二分类,例如识别裂缝,只有背景和裂缝两个元素,可以通过以下代码,实现像素值的转化:

from PIL import Image
import numpy as np
import os

if __name__ == '__main__':
    work_dir = "test"  # 图像所处文件夹
    file_names = os.listdir(work_dir)
    for file_name in file_names:
        # print(file_name) # ISIC_0000000_Segmentation.png
        file_path = os.path.join(work_dir, file_name)

        image = Image.open(file_path)
        img = np.array(image)
        img[img == 38] = 1  #这里将像素值为38的地方转为1,根据自己要求设置

        # 重新保存
        image = Image.fromarray(img, 'L')
        new_name = file_name[:-4]
        new_name = new_name.strip("_Segmentation")  # 文件名处理成和图像一样的名字

        image.save(f'{new_name}.png')

获取图片像素值的代码:

from PIL import Image, ImageTk
import tkinter as tk


def get_pixel(event):
    # 获取鼠标点击位置
    x = event.x
    y = event.y

    # 获取像素RGB值
    pixel = img.getpixel((x, y))

    # 显示像素信息
    print("Pixel at ({}, {}) - RGB: {}".format(x, y, pixel))


window = tk.Tk()# 创建窗口

img = Image.open("ok/1.png")# 打开图片文件

tk_img = ImageTk.PhotoImage(img)# 将图片转换为Tkinter可用的格式

canvas = tk.Canvas(window, width=img.size[0], height=img.size[1])# 创建画布
canvas.pack()

canvas.create_image(0, 0, anchor=tk.NW, image=tk_img)# 在画布上显示图片

canvas.bind("<Button-1>", get_pixel)# 绑定鼠标点击事件

window.mainloop()# 进入主循环

通用将0-255的彩图转换为0和1的黑图标签:

#--------------------------------------------------------#
#   该代码用于调整标签的格式
#--------------------------------------------------------#
import os

import numpy as np
from PIL import Image
from tqdm import tqdm

#-----------------------------------------------------------------------------------#
#   Origin_SegmentationClass_path   原始标签所在的路径
#   Out_SegmentationClass_path      输出标签所在的路径
#                                   处理后的标签为灰度图,如果设置的值太小会看不见具体情况。
#-----------------------------------------------------------------------------------#
Origin_SegmentationClass_path   = "D:/datas/Rock_rock/seg_s/"
Out_SegmentationClass_path      = "D:/datas/Rock_rock/seg_e/"

#-----------------------------------------------------------------------------------#
#   Origin_Point_Value  原始标签对应的像素点值
#   Out_Point_Value     输出标签对应的像素点值
#                       Origin_Point_Value需要与Out_Point_Value一一对应。
#   举例如下,当:
#   Origin_Point_Value = np.array([0, 255]);Out_Point_Value = np.array([0, 1])
#   代表将原始标签中值为0的像素点,调整为0,将原始标签中值为255的像素点,调整为1。
#
#   示例中仅调整了两个像素点值,实际上可以更多个,如:
#   Origin_Point_Value = np.array([0, 128, 255]);Out_Point_Value = np.array([0, 1, 2])
#
#   也可以是数组(当标签值为RGB像素点时),如
#   Origin_Point_Value = np.array([[0, 0, 0], [1, 1, 1]]);Out_Point_Value = np.array([0, 1])
#-----------------------------------------------------------------------------------#
Origin_Point_Value              = np.array([0, 255])
Out_Point_Value                 = np.array([0, 1])

if __name__ == "__main__":
    if not os.path.exists(Out_SegmentationClass_path):
        os.makedirs(Out_SegmentationClass_path)

    #---------------------------#
    #   遍历标签并赋值
    #---------------------------#
    png_names = os.listdir(Origin_SegmentationClass_path)
    print("正在遍历全部标签。")
    for png_name in tqdm(png_names):
        png     = Image.open(os.path.join(Origin_SegmentationClass_path, png_name))
        w, h    = png.size
        
        png     = np.array(png)
        out_png = np.zeros([h, w])
        for i in range(len(Origin_Point_Value)):
            mask = png[:, :] == Origin_Point_Value[i]
            if len(np.shape(mask)) > 2:
                mask = mask.all(-1)
            out_png[mask] = Out_Point_Value[i]
        
        out_png = Image.fromarray(np.array(out_png, np.uint8))
        out_png.save(os.path.join(Out_SegmentationClass_path, png_name))

    #-------------------------------------#
    #   统计输出,各个像素点的值得个数
    #-------------------------------------#
    print("正在统计输出的图片每个像素点的数量。")
    classes_nums        = np.zeros([256], np.int)
    for png_name in tqdm(png_names):
        png_file_name   = os.path.join(Out_SegmentationClass_path, png_name)
        if not os.path.exists(png_file_name):
            raise ValueError("未检测到标签图片%s,请查看具体路径下文件是否存在以及后缀是否为png。"%(png_file_name))
        
        png             = np.array(Image.open(png_file_name), np.uint8)
        classes_nums    += np.bincount(np.reshape(png, [-1]), minlength=256)
        
    print("打印像素点的值与数量。")
    print('-' * 37)
    print("| %15s | %15s |"%("Key", "Value"))
    print('-' * 37)
    for i in range(256):
        if classes_nums[i] > 0:
            print("| %15s | %15s |"%(str(i), str(classes_nums[i])))
            print('-' * 37)

感谢!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值