机器学习
文章平均质量分 74
LIsaWinLee
一个集头发与才华于一身的小女子
展开
-
机器学习算法之GBDT
机器学习算法之GBDT原创 2022-07-04 13:57:16 · 5350 阅读 · 2 评论 -
机器学习之集成学习
集成学习的相关知识原创 2022-06-28 16:12:00 · 2527 阅读 · 2 评论 -
分类问题常用算法之决策树、随机森林及python实现
关于决策树和随即森林的知识原创 2022-06-24 14:16:17 · 2427 阅读 · 0 评论 -
分类问题常用算法之支持向量机SVM
分类问题是机器学习的一大任务。如图1展示的是一个二分类问题,图中的黑心点和空心点,事先被标记为两类。SVM的目标是找到一个将其“完美”分类的超平面。原创 2022-06-23 10:55:47 · 1772 阅读 · 0 评论 -
分类问题常用算法之逻辑回归
逻辑回归原创 2022-06-23 10:29:51 · 315 阅读 · 0 评论 -
正则化技术分析
正则化技术分析转载 2022-06-23 10:19:00 · 268 阅读 · 0 评论 -
【转载】关于Resnet18的结构参数以及每层卷积池化后的特征图大小和通道数变化
实验需要查到了这篇博客浅显易懂,真的是值得转载记录一下。更多需要的人阅读哦~以下完整的记录了原版博客,想看原版请戳ResNet18结构、各层输出维度网络结构及参数:import torchvision.models as modelsresnet18 = models.resnet18()print(resnet18)ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias转载 2022-04-24 10:16:21 · 5935 阅读 · 0 评论 -
【转载分享】pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法
本篇博客是转载,目的是学习记录,同时可以让更多有此学习需求的人看到,若有侵权,联系必删!以下已经将全部内容移植过来,供学习参考,并在此附上原文链接,欢迎各位到原博关注点赞!!0,可视化的重要性:深度学习很多方向所谓改进模型、改进网络都是在按照人的主观思想在改进,常常在说模型的本质是提取特征,但并不知道它提取了什么特征、哪些区域对于识别真正起作用、也不知道网络是根据什么得出了分类结果。为了增强结果的可解释性,需要给出模型的一些可视化图来证明模型或新methods对于任务的作用,这一点不仅能增加新模型或新转载 2022-05-08 09:15:50 · 1170 阅读 · 0 评论 -
【转载】1x1卷积核的作用
1×1卷积的作用转载 2022-05-09 14:51:18 · 253 阅读 · 0 评论 -
机器学习中的极大似然估计(MLE)、最大后验估计(MAE)
极大似然估计和最大后验概率估计的相关知识原创 2022-06-19 18:34:15 · 36273 阅读 · 8 评论