运用SPSS进行PCA主成分分析(因子分析)

本文详细介绍了如何使用SPSS进行主成分分析(PCA),包括数据标准化、主成分提取、权重计算等步骤,并提供了Z-score标准化和KMO检验的说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


写在前面:很抱歉,因课题转换,已经不做这方面的研究了,各位的评论就不再回复了,欢迎自行在评论里讨论!

PCA主成分分析是以降维方式提取主成分,提取出的主成分是原始变量的综合考量,可简化数据的复杂度,便于后期处理。本文记录了如何利用SPSS中自带的因子分析进行主成分分析。

一、 SPSS数据标准化

  1. 用SPSS软件打开文件;
    在这里插入图片描述
  2. 数据标准化,【分析】–【描述统计】–【描述】;
    在这里插入图片描述
  3. 将所有变量移至右侧,选择【将标准化值另存为变量】;
    在这里插入图片描述
  4. 直接回到“数据视图”,可以看到多了81个标准化后的变量;
    在这里插入图片描述

二、 SPSS主成分分析

  1. 主成分分析,【分析】–【降维】–【因子】;
    在这里插入图片描述
  2. 将标准化后的变量移至右侧;
    在这里插入图片描述
  3. 【概述】部分选择“初始解”、“系数”、“KMO和巴特利特球形度检验”;
    在这里插入图片描述
  4. 【提取】部分选择主成分,其它默认即可;
    在这里插入图片描述
  5. 【旋转】部分选择“最大方差法”、“旋转后的解”;
    在这里插入图片描述
  6. 【得分】部分选择“显示因子得分系数矩阵”,若想保存为变量,也可选择;
    在这里插入图片描述
  7. 【选项】部分选择“成列排除个案”、“按大小排序”;
    在这里插入图片描述
  8. 查看结果中的“总方差解释”,提取的主成分个数,一般有两种条件:1)特征值>1,2)方差累积贡献率>80%,在85%—95%;
    在这里插入图片描述

三、 EXCEL权重计算

  1. 由于前5个成分方差累积贡献率为85.564%>85%,因此提取前5个主成分;
    在这里插入图片描述
  2. 因为z-score标准化是将数据进行正态分布,因此有正有负,需先进行绝对值化y=|x|;
    此步骤可视所需结果而定,若所研究的问题不在意权重计算后的值为负值,则此步骤可忽略
    在这里插入图片描述
  3. 将接下来计算需要用到的特征根和方差记录好;
    在这里插入图片描述
    在这里插入图片描述
  4. 计算线性组合中的系数;
    公式为:绝对值化数/对应主成分特征根的平方根
    在这里插入图片描述
  5. 计算综合得分模型中的系数;
    公式为:(第一主成分方差×第一线性组合系数N4+第二主成分方差×第二线性组合系数O4+第三主成分方差×第三线性组合系数P4+第四主成分方差×第四线性组合系数Q4+第五主成分方差×第五线性组合系数R4)/五项成分方差之和
    在这里插入图片描述
  6. 计算权重;
    公式为:每项综合得分模型中的系数/综合得分模型中的系数之和
    在这里插入图片描述
  7. 将权重进行倒序排序,排序前五项即为特征波段,对照标出波段即可。
    在这里插入图片描述

四、 思考

1. 数据标准化的方法:“最小—最大标准化”、“Z-score标准化”;

a)最小—最大标准化
原理:将某一问项的原始值x通过标准化映射成在区间[0,1]中的值,其公式为:新数据=(原数据-极小值)/(极大值-极小值),也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间;
公式:标准化结果x’=(x-min)/(max-min),其中x表示原始数据,min表示该指标的最小值,max表示该指标的最大值;
b)Z-score标准化
原理:通过原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其标准化后的数值大小有正有负,如下图中的标准正态分布曲线;
标准正态分布曲线
适用范围:数据的最大最小值不知道的情况下、有超出取值范围的离群数据的情况、适用于不同量级数据的无量化处理;
公式:新数据=(原数据-均值)/标准差;
此次实验选择的是Z-score标准化。

2. 关于KMO检验标准;

KMO是用来检验该数据是否可以使用主成分分析的一个指标
在这里插入图片描述
由于此次实验的样本数小于指标数,或者可以理解为样本数过少导致KMO指标无法查看;因此我们通过相关性矩阵看到指标间有一定相关性,可提取主成分分析。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值