运用SPSS进行PCA主成分分析(因子分析)

本文详细介绍了如何使用SPSS进行主成分分析(PCA),包括数据标准化、主成分提取、权重计算等步骤,并提供了Z-score标准化和KMO检验的说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


写在前面:很抱歉,因课题转换,已经不做这方面的研究了,各位的评论就不再回复了,欢迎自行在评论里讨论!

PCA主成分分析是以降维方式提取主成分,提取出的主成分是原始变量的综合考量,可简化数据的复杂度,便于后期处理。本文记录了如何利用SPSS中自带的因子分析进行主成分分析。

一、 SPSS数据标准化

  1. 用SPSS软件打开文件;
    在这里插入图片描述
  2. 数据标准化,【分析】–【描述统计】–【描述】;
    在这里插入图片描述
  3. 将所有变量移至右侧,选择【将标准化值另存为变量】;
    在这里插入图片描述
  4. 直接回到“数据视图”,可以看到多了81个标准化后的变量;
    在这里插入图片描述

二、 SPSS主成分分析

  1. 主成分分析,【分析】–【降维】–【因子】;
    在这里插入图片描述
  2. 将标准化后的变量移至右侧;
    在这里插入图片描述
  3. 【概述】部分选择“初始解”、“系数”、“KMO和巴特利特球形度检验”;
    在这里插入图片描述
  4. 【提取】部分选择主成分,其它默认即可;
    在这里插入图片描述
  5. 【旋转】部分选择“最大方差法”、“旋转后的解”;
    在这里插入图片描述
  6. 【得分】部分选择“显示因子得分系数矩阵”,若想保存为变量,也可选择;
    在这里插入图片描述
  7. 【选项】部分选择“成列排除个案”、“按大小排序”;
    在这里插入图片描述
  8. 查看结果中的“总方差解释”,提取的主成分个数,一般有两种条件:1)特征值>1,2)方差累积贡献率>80%,在85%—95%;
    在这里插入图片描述

三、 EXCEL权重计算

  1. 由于前5个成分方差累积贡献率为85.564%>85%,因此提取前5个主成分;
    在这里插入图片描述
  2. 因为z-score标准化是将数据进行正态分布,因此有正有负,需先进行绝对值化y=|x|;
    此步骤可视所需结果而定,若所研究的问题不在意权重计算后的值为负值,则此步骤可忽略
    在这里插入图片描述
  3. 将接下来计算需要用到的特征根和方差记录好;
    在这里插入图片描述
    在这里插入图片描述
  4. 计算线性组合中的系数;
    公式为:绝对值化数/对应主成分特征根的平方根
    在这里插入图片描述
  5. 计算综合得分模型中的系数;
    公式为:(第一主成分方差×第一线性组合系数N4+第二主成分方差×第二线性组合系数O4+第三主成分方差×第三线性组合系数P4+第四主成分方差×第四线性组合系数Q4+第五主成分方差×第五线性组合系数R4)/五项成分方差之和
    在这里插入图片描述
  6. 计算权重;
    公式为:每项综合得分模型中的系数/综合得分模型中的系数之和
    在这里插入图片描述
  7. 将权重进行倒序排序,排序前五项即为特征波段,对照标出波段即可。
    在这里插入图片描述

四、 思考

1. 数据标准化的方法:“最小—最大标准化”、“Z-score标准化”;

a)最小—最大标准化
原理:将某一问项的原始值x通过标准化映射成在区间[0,1]中的值,其公式为:新数据=(原数据-极小值)/(极大值-极小值),也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间;
公式:标准化结果x’=(x-min)/(max-min),其中x表示原始数据,min表示该指标的最小值,max表示该指标的最大值;
b)Z-score标准化
原理:通过原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化,经过处理的数据符合标准正态分布,即均值为0,标准差为1,其标准化后的数值大小有正有负,如下图中的标准正态分布曲线;
标准正态分布曲线
适用范围:数据的最大最小值不知道的情况下、有超出取值范围的离群数据的情况、适用于不同量级数据的无量化处理;
公式:新数据=(原数据-均值)/标准差;
此次实验选择的是Z-score标准化。

2. 关于KMO检验标准;

KMO是用来检验该数据是否可以使用主成分分析的一个指标
在这里插入图片描述
由于此次实验的样本数小于指标数,或者可以理解为样本数过少导致KMO指标无法查看;因此我们通过相关性矩阵看到指标间有一定相关性,可提取主成分分析。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值