JAVA:滑动窗口算法的技术指南

1、简述

滑动窗口算法是一种高效解决子数组、子字符串问题的算法,广泛应用于数据流处理、网络限流和字符串操作等场景。本文将详细解析滑动窗口算法的核心思想、常见问题及其实现方式,并结合具体示例和实际应用场景进行说明。

在这里插入图片描述


2、核心思想

滑动窗口是一种双指针技术,维护一个能够在数据结构上"滑动"的窗口(通常由两个指针表示)。通过动态调整窗口的范围,优化计算的时间复杂度。

基本步骤:

  • 初始化两个指针 leftright,分别表示窗口的左边界和右边界。
  • 移动 right 指针扩大窗口,直到窗口满足问题的条件。
  • 在满足条件时,移动 left 指针缩小窗口,寻找更优解或移除不必要的元素。
  • 重复上述过程,直到 right 遍历完整个数据结构。

在这里插入图片描述


3、实践样例

以下是几个经典问题的滑动窗口解法:

3.1 找到字符串中所有不重复字符的最长子串

给定一个字符串,找出其中不含重复字符的最长子串。

import java.util.HashSet;

public class LongestSubstringWithoutRepeatingChars {
    public int lengthOfLongestSubstring(String s) {
        int left = 0, right = 0, maxLength = 0;
        HashSet<Character> window = new HashSet<>();

        while (right < s.length()) {
            char c = s.charAt(right);
            if (!window.contains(c)) {
                window.add(c);
                maxLength = Math.max(maxLength, right - left + 1);
                right++;
            } else {
                window.remove(s.charAt(left));
                left++;
            }
        }

        return maxLength;
    }

    public static void main(String[] args) {
        LongestSubstringWithoutRepeatingChars solution = new LongestSubstringWithoutRepeatingChars();
        System.out.println(solution.lengthOfLongestSubstring("abcabcbb")); // Output: 3
    }
}

3.2 滑动窗口最大值

给定一个数组 nums 和一个大小为 k 的窗口,找到每个滑动窗口中的最大值。

import java.util.ArrayDeque;
import java.util.Deque;

public class SlidingWindowMaximum {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if (nums == null || nums.length == 0) return new int[0];
        int n = nums.length;
        int[] result = new int[n - k + 1];
        Deque<Integer> deque = new ArrayDeque<>();

        for (int i = 0; i < nums.length; i++) {
            // 移除窗口左侧已过期的元素
            if (!deque.isEmpty() && deque.peekFirst() < i - k + 1) {
                deque.pollFirst();
            }

            // 移除所有比当前元素小的元素,因为它们不会成为最大值
            while (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
                deque.pollLast();
            }

            deque.offerLast(i);

            // 当窗口达到大小 k 时,记录最大值
            if (i >= k - 1) {
                result[i - k + 1] = nums[deque.peekFirst()];
            }
        }

        return result;
    }

    public static void main(String[] args) {
        SlidingWindowMaximum solution = new SlidingWindowMaximum();
        int[] result = solution.maxSlidingWindow(new int[]{1,3,-1,-3,5,3,6,7}, 3);
        for (int r : result) {
            System.out.print(r + " ");
        }
        // Output: 3 3 5 5 6 7
    }
}

4、应用场景

滑动窗口算法因其高效性,在以下场景中应用广泛:

  • 字符串处理:
    查找字符串中的子串问题,例如最长无重复子串、包含所有指定字符的最短子串。

  • 数据流处理:
    在处理实时数据流时,通过滑动窗口维护最近的状态,例如计算实时统计信息(平均值、最大值等)。

  • 网络限流:
    滑动窗口用于实现动态限流算法,限制一段时间内的请求数量。

  • 数组处理:
    处理固定窗口大小的问题,例如滑动窗口最大值、最小值等。


5、总结

滑动窗口算法通过动态调整窗口范围,极大地提高了求解某些问题的效率。在实际开发中,可以结合问题的特点灵活使用滑动窗口技术解决各种复杂问题。如果你还没有在项目中尝试滑动窗口算法,那么不妨以本文提供的代码示例为起点,尝试将其应用到实际场景中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拾荒的小海螺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值