1、简述
滑动窗口算法是一种高效解决子数组、子字符串问题的算法,广泛应用于数据流处理、网络限流和字符串操作等场景。本文将详细解析滑动窗口算法的核心思想、常见问题及其实现方式,并结合具体示例和实际应用场景进行说明。
2、核心思想
滑动窗口是一种双指针技术,维护一个能够在数据结构上"滑动"的窗口(通常由两个指针表示)。通过动态调整窗口的范围,优化计算的时间复杂度。
基本步骤:
- 初始化两个指针
left
和right
,分别表示窗口的左边界和右边界。 - 移动
right
指针扩大窗口,直到窗口满足问题的条件。 - 在满足条件时,移动
left
指针缩小窗口,寻找更优解或移除不必要的元素。 - 重复上述过程,直到
right
遍历完整个数据结构。
3、实践样例
以下是几个经典问题的滑动窗口解法:
3.1 找到字符串中所有不重复字符的最长子串
给定一个字符串,找出其中不含重复字符的最长子串。
import java.util.HashSet;
public class LongestSubstringWithoutRepeatingChars {
public int lengthOfLongestSubstring(String s) {
int left = 0, right = 0, maxLength = 0;
HashSet<Character> window = new HashSet<>();
while (right < s.length()) {
char c = s.charAt(right);
if (!window.contains(c)) {
window.add(c);
maxLength = Math.max(maxLength, right - left + 1);
right++;
} else {
window.remove(s.charAt(left));
left++;
}
}
return maxLength;
}
public static void main(String[] args) {
LongestSubstringWithoutRepeatingChars solution = new LongestSubstringWithoutRepeatingChars();
System.out.println(solution.lengthOfLongestSubstring("abcabcbb")); // Output: 3
}
}
3.2 滑动窗口最大值
给定一个数组 nums
和一个大小为 k
的窗口,找到每个滑动窗口中的最大值。
import java.util.ArrayDeque;
import java.util.Deque;
public class SlidingWindowMaximum {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || nums.length == 0) return new int[0];
int n = nums.length;
int[] result = new int[n - k + 1];
Deque<Integer> deque = new ArrayDeque<>();
for (int i = 0; i < nums.length; i++) {
// 移除窗口左侧已过期的元素
if (!deque.isEmpty() && deque.peekFirst() < i - k + 1) {
deque.pollFirst();
}
// 移除所有比当前元素小的元素,因为它们不会成为最大值
while (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
deque.pollLast();
}
deque.offerLast(i);
// 当窗口达到大小 k 时,记录最大值
if (i >= k - 1) {
result[i - k + 1] = nums[deque.peekFirst()];
}
}
return result;
}
public static void main(String[] args) {
SlidingWindowMaximum solution = new SlidingWindowMaximum();
int[] result = solution.maxSlidingWindow(new int[]{1,3,-1,-3,5,3,6,7}, 3);
for (int r : result) {
System.out.print(r + " ");
}
// Output: 3 3 5 5 6 7
}
}
4、应用场景
滑动窗口算法因其高效性,在以下场景中应用广泛:
-
字符串处理:
查找字符串中的子串问题,例如最长无重复子串、包含所有指定字符的最短子串。 -
数据流处理:
在处理实时数据流时,通过滑动窗口维护最近的状态,例如计算实时统计信息(平均值、最大值等)。 -
网络限流:
滑动窗口用于实现动态限流算法,限制一段时间内的请求数量。 -
数组处理:
处理固定窗口大小的问题,例如滑动窗口最大值、最小值等。
5、总结
滑动窗口算法通过动态调整窗口范围,极大地提高了求解某些问题的效率。在实际开发中,可以结合问题的特点灵活使用滑动窗口技术解决各种复杂问题。如果你还没有在项目中尝试滑动窗口算法,那么不妨以本文提供的代码示例为起点,尝试将其应用到实际场景中。