场景
从数据库查询信息,分批查询,50000个查询一次,再把每次查询结果汇总,如果分10次查询,正常查询每次返List<Product>,要等前一次查询返回结果后,才能执行下一次查询,汇总结果,是同步执行的过程。试想如果可以同时进行查询,之间互不影响,每个查询返回结构后,直接汇总,这样就大大节约了查询时间。 AsyncResult作用就在这里。
借用举例
AsyncResult是异步方式,异步主要用于调用的代码需要长时间运行,才能返回结果的时候,可以不阻塞调用者。
打个比方,同步方式就是你打电话给客服,客服没法立刻解决,客服说你等等,别挂电话,然后等了10分钟,再告诉你。再挂电话。
此时电话费照收,并且你不能接打别人的电话。
异步方式就是,客服说,我先查查,查到了给你回电话,然后挂断。你干别的事情。等了10分钟,客服给你来电话了,告诉你结果。
代码
1,分批查询
@Override
public Integer selectListCount(StorageFeeChargePageCommand command, Integer status,String key) throws Exception {
Example example= conditions(command,status);
int count = tgStorageFeeChargeMapper.selectCountByExample(example);
int rowMaxCount = 50000;
//分批查询
int tempsize = (count % rowMaxCount) == 0 ? count / rowMaxCount : count / rowMaxCount + 1;
//分页数据对象转换
List<StorageFeeCharge> list = new ArrayList<>();
int listSize =0;
ArrayList<Future<List<StorageFeeCharge>>> ret = new ArrayList<Future<List<StorageFeeCharge>>>();
//分批查询
for (int i = 0; i < tempsize; i++) {
int pageNum =i+1;
Future<List<StorageFeeCharge>> asyncResult1 = storageCommonApplication.asynchronousGetSFeeCharge(pageNum,rowMaxCount,example,key);
ret.add(asyncResult1);
}
int num = 0;
//获取返回结果
for (Future<List<StorageFeeCharge>> result : ret){
List<StorageFeeCharge> s = result.get();
listSize += s.size();
s.clear();
}
return listSize;
}
2,异步查询
@Async
public Future<List<StorageFeeCharge>> asynchronousGetSFeeCharge(int pageNum, int rowMaxCount, Example example,String key){
//分页数据对象转换
List<StorageFeeCharge> list = new ArrayList<>();
PageWrap<StorageFeeCharge> pageList = new PageWrap<StorageFeeCharge>();
Page<TgStorageFeeCharge> page = PageUtil.startPage(pageNum,rowMaxCount);
list = storageCommonRepository.selectPageList( pageNum, rowMaxCount, example);
saveRedis(list, key);
return new AsyncResult(list);
}