问题描述
给你一个整数数组 nums 。请你对数组执行下述操作:
从 nums 中找出 任意 两个 相邻 的 非互质 数。
如果不存在这样的数,终止 这一过程。
否则,删除这两个数,并 替换 为它们的 最小公倍数(Least Common Multiple,LCM)。
只要还能找出两个相邻的非互质数就继续 重复 这一过程。
返回修改后得到的 最终 数组。可以证明的是,以 任意 顺序替换相邻的非互质数都可以得到相同的结果。生成的测试用例可以保证最终数组中的值 小于或者等于 108 。
两个数字 x 和 y 满足 非互质数 的条件是:GCD(x, y) > 1 ,其中 GCD(x, y) 是 x 和 y 的 最大公约数 。
示例 1 :
输入:nums = [6,4,3,2,7,6,2]
输出:[12,7,6]
解释:
- (6, 4) 是一组非互质数,且 LCM(6, 4) = 12 。得到 nums = [12,3,2,7,6,2] 。
- (12, 3) 是一组非互质数,且 LCM(12, 3) = 12 。得到 nums = [12,2,7,6,2] 。
- (12, 2) 是一组非互质数,且 LCM(12, 2) = 12 。得到 nums = [12,7,6,2] 。
- (6, 2) 是一组非互质数,且 LCM(6, 2) = 6 。得到 nums = [12,7,6] 。
现在,nums 中不存在相邻的非互质数。
因此,修改后得到的最终数组是 [12,7,6] 。
注意,存在其他方法可以获得相同的最终数组。
示例 2 :输入:nums = [2,2,1,1,3,3,3]
输出:[2,1,1,3]
解释:
- (3, 3) 是一组非互质数,且 LCM(3, 3) = 3 。得到 nums = [2,2,1,1,3,3] 。
- (3, 3) 是一组非互质数,且 LCM(3, 3) = 3 。得到 nums = [2,2,1,1,3] 。
- (2, 2) 是一组非互质数,且 LCM(2, 2) = 2 。得到 nums = [2,1,1,3] 。
现在,nums 中不存在相邻的非互质数。
因此,修改后得到的最终数组是 [2,1,1,3] 。
注意,存在其他方法可以获得相同的最终数组。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 105
生成的测试用例可以保证最终数组中的值 小于或者等于 108 。来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/replace-non-coprime-numbers-in-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
Java
class Solution {
public List<Integer> replaceNonCoprimes(int[] nums) {
/**
[6,4,3,2,7,6,2]
[12,7,6]
*/
List<Integer> ans = new ArrayList<>();
int len = nums.length;
ans.add(nums[0]);
for(int i = 1;i < len;i++){
ans.add(nums[i]);
while(ans.size() > 1){
int n1 = ans.get(ans.size() - 1);
int n2 = ans.get(ans.size() - 2);
if(gcd(n1,n2) == 1){
break;
}
//程序执行到这里,说明这两个数不是互为质数的
//需要删除这两个数,替换为这两个数的最小公倍数
ans.remove(ans.size() - 1);
ans.set(ans.size() - 1,lcm(n1,n2));
}
}
return ans;
}
//什么是非互质数 两个数的最大公约数大于1
public int gcd(int a,int b){
if(a % b == 0){
return b;
}
return gcd(b,a % b);
}
//最小公倍数
public int lcm(int a,int b){
return a / gcd(a,b) * b;
}
}