问题描述
你被请来给一个要举办高尔夫比赛的树林砍树。树林由一个 m x n 的矩阵表示, 在这个矩阵中:
0 表示障碍,无法触碰
1 表示地面,可以行走
比 1 大的数 表示有树的单元格,可以行走,数值表示树的高度
每一步,你都可以向上、下、左、右四个方向之一移动一个单位,如果你站的地方有一棵树,那么你可以决定是否要砍倒它。你需要按照树的高度从低向高砍掉所有的树,每砍过一颗树,该单元格的值变为 1(即变为地面)。
你将从 (0, 0) 点开始工作,返回你砍完所有树需要走的最小步数。 如果你无法砍完所有的树,返回 -1 。
可以保证的是,没有两棵树的高度是相同的,并且你至少需要砍倒一棵树。
输入:forest = [[1,2,3],[0,0,4],[7,6,5]] 输出:6 解释:沿着上面的路径,你可以用 6 步,按从最矮到最高的顺序砍掉这些树。
输入:forest = [[1,2,3],[0,0,0],[7,6,5]]
输出:-1
解释:由于中间一行被障碍阻塞,无法访问最下面一行中的树。
示例 3:输入:forest = [[2,3,4],[0,0,5],[8,7,6]]
输出:6
解释:可以按与示例 1 相同的路径来砍掉所有的树。
(0,0) 位置的树,可以直接砍去,不用算步数。来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/cut-off-trees-for-golf-event
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
Java 广搜
class Solution {
int[] xs = {0,0,1,-1};
int[] ys = {1,-1,0,0};
public int cutOffTree(List<List<Integer>> forest) {
int row = forest.size();
int col = forest.get(0).size();
//存储每棵树的位置
List<int[]> trees = new ArrayList<>();
for(int i = 0;i < row;i++){
for(int j = 0;j < col;j++){
if(forest.get(i).get(j) > 1){
trees.add(new int[]{i,j});
}
}
}
//按照树的高度排序
Collections.sort(trees,(a,b) -> forest.get(a[0]).get(a[1]) - forest.get(b[0]).get(b[1]));
int size = trees.size();
int ans = 0;
int curX = 0;
int curY = 0;
//遍历第一棵树到第二棵树,第二棵树到第三棵树的步数,全部相加就是结果
for(int i = 0;i < size;i++){
int step = bfs(forest,curX,curY,trees.get(i)[0],trees.get(i)[1]);
if(step == -1) return -1;
ans += step;
curX = trees.get(i)[0];
curY = trees.get(i)[1];
}
return ans;
}
public int bfs(List<List<Integer>> forest,int curX,int curY,int nextX,int nextY){
if(curX == nextX && curY == nextY) return 0;
int row = forest.size();
int col = forest.get(0).size();
int step = 0;
Queue<int[]> queue = new LinkedList<>();
boolean[][] visible = new boolean[row][col];
queue.offer(new int[]{curX,curY});
visible[curX][curY] = true;
while(!queue.isEmpty()){
step++;
int size = queue.size();
for(int i = 0;i < size;i++){
int[] temp = queue.poll();
for(int k = 0;k < 4;k++){
int x = temp[0] + xs[k];
int y = temp[1] + ys[k];
if(x >= 0 && y >= 0 && x < row && y < col){
if(!visible[x][y] && forest.get(x).get(y) > 0){
if(x == nextX && y == nextY) return step;
queue.offer(new int[]{x,y});
visible[x][y] = true;
}
}
}
}
}
return -1;
}
}