话题引入(参考自百度百科–约瑟夫问题)
约瑟夫问题,是一个计算机科学和数学中的问题,在计算机编程的算法中,类似问题又称为约瑟夫环,又称“丢手绢问题”。
问题来历
据说著名犹太历史学家Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从。首先从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了和,一开始要站在什么地方才能避免被处决。Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
17世纪的法国数学家加斯帕在《数目的游戏问题》中讲了这样一个故事:15个教徒和15 个非教徒在深海上遇险,必须将一半的人投入海中,其余的人才能幸免于难,于是想了一个办法:30个人围成一圆圈,从第一个人开始依次报数,每数到第九个人就将他扔入大海,如此循环进行直到仅余15个人为止。问怎样排法,才能使每次投入大海的都是非教徒。
话题讨论
我们学校最近两次的蓝桥杯校选拔赛都出现过约瑟夫问题,怎么说呢,这种类型的题目虽然不难,而且当时我也做出来了,但是需要时间,脑海中没有一个清晰的框架,做是做出来了,也是比较模糊的那种一步步模拟出来的,可能稍微变一下型又要想一会时间了。
刚好今天偶遇这条题,就顺便记录一下,也总结出了一个模板,下次遇到直接套用就完事,省时省力。
分析
环形圈可以将其转换为一个一维列表来存储。
先以问题一为例,如果跟着题目思路走的话应该就是从起始位置出发,定义一个指针,指向此时走到的位置。开始往后数,每数到3就把一个元素给踢走,反复这么做。当遍历完列表最后一个元素后, 指针又返回第一个元素,重新遍历,重复上面动作,直到选出最后所需元素为止。
上面说的方法,是比较容易想到的方法,我称其为“完全模拟法”,就是完全跟着题目思路走一步步模拟的。这种思路的优点就是比较容易想到,缺点就是容易出错,每弹出一个元素,列表长度会改变,相应的往后元素的下标值也会发生改变,这时要十分注意,稍微不小心就会出错。
那么我们就想想有没有什么方法能够避免这种情况。
方法当然是有的,而且很多,我就以其中一种方法为例讲解一下。
思路
我们把环形圈当成一个列表队列,每次报数当做是队列元素的出队入队操作,我们定义一个计数器,记录此时报到第几个元素,每次只对列表首个元素进行判断,如果报到3,就将它踢出队列,否则,将它放到队尾。不断循环出队入队操作,直到队中元素个数满足要求为止。
这么做其实跟“完全模拟法”的思路差不多的,都没有改变元素的相对顺序,但这么做能够减少因为列表长度变换而引起的麻烦。
如果思路不懂的同学可以手写模拟一下出队入队的过程。
还有一种高阶的做法是,公式法,找出其中的数学规律进行解答,时间空间都能够优化到极致。可参考这篇文章。
模板
这里我总结出了一个模板,可应对总人数不同,间隔数不同,剩余人数不同的情况。 但空间时间效率优化的不够好,面对大额数时会显得比较鸡肋,因此,模板适用于竞赛填空题。
n,m,k= map(int,input().split()) # n,m,k分别表示 总人数,间隔数,剩余人数
nums = [i for i in range(1,n+1)] # 人数列表
cnt = 1 # 计数器
while len(nums) > m: # 如果列表长度大于剩余人数,则循环操作列表
num = nums.pop(0) # 弹出一个元素
if cnt < k: # 如果没有踩雷那么就将其放入队尾
nums.append(num)
cnt += 1 # 计数器加1
else: # 踩雷就不放回队尾了
cnt = 1 # 计时器加1
print(nums) # 打印符合条件的列表元素
模板使用
根据模板代码,我们就能解决问题1跟问题2了。
先看问题1,共41个人,要剩余2个人,间隔数是3那么输入然后返回的结果就是:
问题2 共30个人,要剩余15个人,间隔数是9.那么结果是:
(3.9更新)
公式法
每次模拟下标得出胜利者位置,从根据间隔数,将结果从后往前推。
n, k = map(int,input().split())
result = 0 # 表示最后生存者编号
for i in range(2,n+1):
# 模拟队列,从后往前推生存者所处下标
result = (result + k) % i # k 表示间隔数,i表示队列长度
print(result+1) # 得出长度为n的队列后,返回生存者下标并加1