前面章节介绍了贝叶斯决策论,现在我们将其推广到多个特征、多种状态类别、更一般的损失函数行为。
首先特征标量x变为特征向量x,如果有d个特征,则称其d维欧几里得空间为特征空间(二维的欧几里得空间就是一个平面直角坐标系,三维就是一个立体)。
行为是指给定x,我们将其划分为类别w或者拒绝决策等等。
最小化条件风险
我们有一个观测特征x,我们要采取某一行动,这些行动是有风险(损失、代价)的。用 来表示。那么给定x,我们可能带来的损失期望(条件风险)可以用下式表示:
该式的含义是,在x的条件下,我们将其分类为不同状态w时(概率),我们对风险的预期(联系一下期望的运算公式很容易理解)。
这样,不管我们遇到什么样的x,我们只要通过选择最小化条件风险的行为,预期风险达到最低,将后验概率与代价函数联系到一起。
总风险依然是一个期望(寻找规则使其最小化):