与 联合创作
你是否曾因网络问题、API限制或隐私顾虑而无法使用ChatGPT?是否渴望拥有一个无需依赖云端、完全免费的智能助手?如果是,那么点击这篇文章就对了!
本指南将手把手教你用Python和本地运行的LLM(大语言模型)从零搭建聊天机器人——无需云端依赖,甚至离线也能运行!
为何选择本地LLM?
本地大语言模型(LLM)为云端AI服务提供了另一种选择。使用本地LLM时,所有数据都保存在您的设备上——无需传输至外部服务器。这对于处理医疗、金融等敏感数据至关重要。本地模型还赋予您完全控制权:可自由调整提示词与系统行为,甚至能基于特定领域数据微调模型以提升性能!
为何选择Python?
Python 是构建本地大语言模型(LLM)聊天机器人的理想选择,因为它易于学习、语法简洁清晰,并拥有庞大的AI和机器学习库生态系统。诸如llama-cpp-python和langchain等工具都对Python友好,使得与LLM的集成无缝衔接。
为何选择Langchain?
选择Langchain的原因在于它通过提供一个支持多步骤链式调用、集成外部数据源(如文件、API或数据库)、管理会话内存以及创建工具调用智能体的框架,简化了基于大语言模型构建强大应用的过程,同时保持代码的模块化与可扩展性。
环境准备
开始前请确保已满足以下条件:
-
Python 3.12
-
系统至少需要8GB内存(内存越大越好)
-
具备Python基础使用经验
-
[可选] 如需更快的速度,可配备一块GPU。
配置本地大语言模型
- 下载Ollama
- 首先,从 https://ollama.com/ 安装 Ollama
-
然后选择下载。根据您的操作系统进行选择。本次安装我们将以Windows系统为例。
-
下载完成后,打开.exe文件。
-
完成所有设置后,打开命令提示符并输入"ollama"。
-
我们还未下载任何本地大语言模型。如需浏览,请访问 https://ollama.com/search