在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
思路:dp,没啥好说的,找出来动态转移方程
dp[i][j]=a[i][j]+max(dp[i-1][j-1],dp[i-1][j]);
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int dp[110][110]; int a[110][110]; int max(int x,int y) //比较函数,返回较大值 { if(x>y) return x; else return y; } int main() { int t; scanf("%d",&t); while(t--) { memset(dp,0,sizeof(dp)); //初始化 int i,j; int n; scanf("%d",&n); for(i=1;i<=n;i++){ for( j=1;j<=i;j++){ scanf("%d",&a[i][j]); } } for( i=1;i<=n;i++) //根据动态转移方程 { for( j=1;j<=i;j++) { dp[i][j]=a[i][j]+max(dp[i-1][j-1],dp[i-1][j]); } } int ans=-1; //遍历最后一行,找出来最大值 for( i=1;i<=n;i++)ans=max(ans,dp[n][i]); printf("%d\n",ans); } return 0; }