Course吴恩达的机器学习课程——week2 编程作业小结
编辑的文档
warmUpExercise
A = eye(5);
featureNormalize
mu = mean(X);
sigma = std(X,1);
for i = 1:size(X,2)
X_norm(:,i)= (X(:,i) - mu(i)) /sigma(i) ;
end
gradientDescent && gradientDescentMulti
theta = theta - alpha * (1/m)* ((X*theta - y)' * X)';
computeCost && computeCostMulti
J = 1/(2*m)*sum( (X*theta -y).^2 )
plotData
plot(x,y,'rx','MarkerSize',10);
ylabel('Profit in $10,000s');
xlabel('Population of City in 10,000s');
normalEqn
theta = pinv(X'*X)*X'*y;
梯度下降计算结果
t = [1650 3];
t = (t - mu )./sigma;
price = [1 t]* theta;
normal equation计算结果
price = [1 1650 3]*theta;