bzoj3677/洛谷P3647 连珠线 树形dp

题目分析

考虑第一颗珠子(根)是谁,那么状态显然是f(x,0/1),表示x是通过1操作加入的还是通过2操作加入的。如果是通过2操作加入的,那么边(x,father(x))和边(x,son(x))应该是蓝色的。
由此我们可以得到一个枚举根的 O(n2) O ( n 2 ) dp: (y指的是x的儿子们,w指的是边的长度)
f(x,0)=max(f(y,0),f(y,1)+w(x,y)) f ( x , 0 ) = ∑ m a x ( f ( y , 0 ) , f ( y , 1 ) + w ( x , y ) )
f(x,1)=f(x,0)+max(f(y,0)+w(x,y)max(f(y,0),f(y,0)+w(x,y))) f ( x , 1 ) = f ( x , 0 ) + m a x ( f ( y , 0 ) + w ( x , y ) − m a x ( f ( y , 0 ) , f ( y , 0 ) + w ( x , y ) ) )
考虑到我们可以通过两次dfs来完成 O(1) O ( 1 ) 移根,所以能够优化一维复杂度(详情参见树上每个点到离其最远点距离-dp做法),只用在记 f(y,0)+w(x,y)max(f(y,0),f(y,0)+w(x,y)) f ( y , 0 ) + w ( x , y ) − m a x ( f ( y , 0 ) , f ( y , 0 ) + w ( x , y ) ) 最大值的同时记录一下这个的次大值,然后从父亲x到儿子y完成转移时,先减去y子树对f(x)造成的贡献,然后用类似的转移方法,只是当f(y,1)后面那一截取最大值时,若那个儿子恰好对应的是y,则只能取次大值进行dp。

代码

#include<bits/stdc++.h>
using namespace std;
int read() {
    int q=0;char ch=' ';
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
    return q;
}
#define RI register int
const int N=200005,inf=0x3f3f3f3f;
int n,tot,ans;
int h[N],ne[N<<1],to[N<<1],w[N<<1];
int f[N],mx1[N],mx2[N],bj[N];
void add(int x,int y,int z) {to[++tot]=y,ne[tot]=h[x],h[x]=tot,w[tot]=z;}
void dfs1(int x,int las) {
    mx1[x]=mx2[x]=-inf;//注意,可能并不能成为2操作加入的珠子
    for(RI i=h[x];i;i=ne[i]) {
        if(to[i]==las) continue;
        dfs1(to[i],x);
        RI kl=max(f[to[i]],f[to[i]]+mx1[to[i]]+w[i]);
        f[x]+=kl,kl=f[to[i]]+w[i]-kl;
        if(kl>=mx1[x]) mx2[x]=mx1[x],mx1[x]=kl,bj[x]=to[i];
        else if(kl>mx2[x]) mx2[x]=kl;
    }
}
void dfs2(int x,int las) {
    ans=max(ans,f[x]);
    for(RI i=h[x];i;i=ne[i]) {
        if(to[i]==las) continue;
        RI y=to[i];
        RI kl=max(f[y],f[y]+mx1[y]+w[i]);//当前子树贡献,要减去
        RI orzabs=max(f[x]-kl,f[x]-kl+(bj[x]==y?mx2[x]:mx1[x])+w[i]);//类似的dp法
        f[y]+=orzabs,orzabs=f[x]-kl+w[i]-orzabs;
        if(orzabs>=mx1[y]) mx2[y]=mx1[y],mx1[y]=orzabs,bj[y]=x;
        else if(orzabs>mx2[y]) mx2[y]=orzabs;
        dfs2(y,x);
    }
}
int main()
{
    RI x,y,z;
    n=read();
    for(RI i=1;i<n;++i)
        x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
    dfs1(1,0),dfs2(1,0);
    printf("%d\n",ans);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值