杜教筛复习笔记

杜教筛这个东西啊,听着好像很厉害,其实就是很厉害,不过并不难。
假设我们要求一个数论函数的前缀和:
S ( n ) = ∑ i = 1 n f ( i ) S(n)=\sum_{i=1}^nf(i) S(n)=i=1nf(i)
我们先找一个神奇函数 g g g出来和 f f f做个卷积:
∑ i = 1 n ( g ∗ f ) ( i ) = ∑ i = 1 n ∑ d ∣ i g ( d ) f ( i d ) = ∑ d = 1 n g ( d ) ∑ i = 1 ⌊ n d ⌋ f ( i ) = ∑ d = 1 n g ( d ) S ( ⌊ n d ⌋ ) \sum_{i=1}^n (g*f)(i)=\sum_{i=1}^n\sum_{d|i}g(d)f(\frac{i}{d})=\sum_{d=1}^ng(d)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}f(i)=\sum_{d=1}^ng(d)S(\lfloor \frac{n}{d} \rfloor) i=1n(gf)(i)=i=1ndig(d)f(di)=d=1ng(d)i=1dnf(i)=d=1ng(d)S(dn)
由此可知:
g ( 1 ) S ( n ) = ∑ i = 1 n ( g ∗ f ) ( i ) − ∑ i = 2 n g ( i ) S ( ⌊ n i ⌋ ) g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S(\lfloor \frac{n}{i} \rfloor) g(1)S(n)=i=1n(gf)(i)i=2ng(i)S(in)
因此如果卷积前缀和很好求的花,后面那一坨可以用数论分块根号时间内求解,然后继续递归什么的。
于是我们可以解决一些问题:bzoj3944,求 μ \mu μ ϕ \phi ϕ的前缀和。
我们知道 ∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum_{d|n}\mu(d)=[n==1] dnμ(d)=[n==1]
所以我们只要让 g ( i ) = 1 g(i)=1 g(i)=1即可。
当然还有: ∑ d ∣ n ϕ ( d ) = n \sum_{d|n}\phi(d)=n dnϕ(d)=n
然后我们利用预处理一部分+map大法好来做这道题就可以了:

#include<bits/stdc++.h>
using namespace std;
#define RI register int
typedef long long LL;
const int N=5000000;
unsigned int T,n;
map<int,LL>mp1,mp2;
LL phi[N+5];int tot,is[N+5],pri[N+5],mu[N+5];
void prework() {
	mu[1]=phi[1]=1;
	for(RI i=2;i<=N;++i) {
		if(!is[i]) pri[++tot]=i,mu[i]=-1,phi[i]=i-1;
		for(RI j=1;j<=tot&&pri[j]*i<=N;++j) {
			is[pri[j]*i]=1;
			if(i%pri[j]==0) {phi[pri[j]*i]=pri[j]*phi[i];break;}
			else mu[pri[j]*i]=-mu[i],phi[pri[j]*i]=phi[pri[j]]*phi[i];
		}
	}
	for(RI i=2;i<=N;++i) mu[i]+=mu[i-1],phi[i]+=phi[i-1];
}
int S1(unsigned int x) {
	if(x==0) return 0;
	if(x<=N) return mu[x];
	if(mp1[x]) return mp1[x];
	int re=1;
	for(RI i=2,j;i<=x;i=j+1) j=x/(x/i),re-=1LL*(j-i+1)*S1(x/i);
	mp1[x]=re;return re;
}
LL S2(unsigned int x) {
	if(x==0) return 0;
	if(x<=N) return phi[x];
	if(mp2[x]) return mp2[x];
	LL re=1LL*x*(x+1)/2;
	for(RI i=2,j;i<=x;i=j+1) j=x/(x/i),re-=1LL*(j-i+1)*S2(x/i);
	mp2[x]=re;return re;
}
int main()
{
	scanf("%d",&T);prework();
	while(T--) scanf("%u",&n),printf("%lld %d\n",S2(n),S1(n));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值