题目分析
一开始全部打隔膜,然后选择几个时间,改成睡觉。若第 i i i小时改成了睡觉,则 x i = 1 x_i=1 xi=1,否则 x i = 0 x_i=0 xi=0,得到若干个式子: t 1 ≤ x i + x i + 1 + . . . + x i + k − 1 ≤ k − t 2 t_1 \leq x_i+x_{i+1}+...+x_{i+k-1} \leq k-t_2 t1≤xi+xi+1+...+xi+k−1≤k−t2。
添加取值范围为 [ 0 , i n f ] [0,inf] [0,inf]的变量 y y y和 z z z,得到式子组:
x 1 + x 2 + . . . + x k = t 1 + y 1 x_1+x_2+...+x_k=t_1+y_1 x1+x2+...+xk=t1+y1
x 1 + x 2 + . . . + x k = k − t 2 − z 1 x_1+x_2+...+x_k=k-t_2-z_1 x1+x2+...+xk=k−t2−z1
x 2 + x 3 + . . . + x k + 1 = t 1 + y 2 x_2+x_3+...+x_{k+1}=t_1+y_2 x2+x3+...+xk+1=t1+y2
…
x n − k + 1 + x n − k + 2 + . . . + x n = k − t 2 − z k x_{n-k+1}+x_{n-k+2}+...+x_n=k-t_2-z_k xn−k+1+xn−k+2+...+xn=k−t2−zk
在最前和最后添加 0 = 0 0=0 0=0这个式子后,差分得到:
x 1 + x 2 + . . . + x k = t 1 + y 1 x_1+x_2+...+x_k=t_1+y_1 x1+x2+...+xk=t1+y1
y 1 + z 1 = ( k − t 1 − t 2 ) y_1+z_1=(k-t_1-t_2) y1+z1=(k−t1−t2)
x k + 1 + ( k − t 1 − t 2 ) = x 1 + y 2 + z 1 x_{k+1}+(k-t_1-t_2)=x_1+y_2+z_1 xk+1+(k−t1−t2)=x1+y2+z1
…
k − t 2 = z n − k + 1 + x n − k + 1 + x n − k + 2 + . . . + x n k-t_2=z_{n-k+1}+x_{n-k+1}+x_{n-k+2}+...+x_n k−t2=zn−k+1+xn−k+1+xn−k+2+...+xn
这样,每个变量分别在一个等式的左边出现了一次,右边出现了一次。
对于每个式子建一个点,每个变量建两个点(入点和出点)。
对于每个式子,左边的变量(和常数)看做流入,右边看做流出,进出平衡看做等式成立。若是变量,就从该变量的出点连一条流量为inf费用为0的边到这个式子点(或从式子点连到该变量的入点),若是常数,就与S或T连流量为这个常数,费用为0的边。
每个变量的入点向出点连边, y y y和 z z z的流量为inf费用为0, x x x的流量为1费用为 s i − e i s_i-e_i si−ei。为了满足所有的常数,跑最大费用最大流(我是将所有费用取反后跑最小费用最大流的)。
我真牛逼,inf设小了,调了两个小时。
代码
#include<bits/stdc++.h>
using namespace std;
#define RI register int
typedef long long LL;
const int N=10005,M=1000005;
const LL inf=1e15;
int K,n,t1,t2,SZ,tot=1,S,T;LL ans;
int sleep[1005],game[1005],pos[1005];
int h[N],ne[M],to[M],X1[N],X2[N],inq[N],pre[N];
LL w[M],flow[M],liu[N],dis[N];
void add(int x,int y,LL z,LL c) {
to[++tot]=y,ne[tot]=h[x],h[x]=tot,flow[tot]=z,w[tot]=c;
to[++tot]=x,ne[tot]=h[y],h[y]=tot,flow[tot]=0,w[tot]=-c;
}
void build() {
S=++SZ,T=++SZ;
for(RI i=1;i<=n+(n-K+1)*2;++i) X1[i]=++SZ,X2[i]=++SZ;
++SZ;for(RI i=1;i<=K;++i) add(X2[i],SZ,inf,0);
add(SZ,X1[n+1],inf,0),add(SZ,T,t1,0);
for(RI i=1;i<=n-K+1;++i) {
++SZ,add(X2[n+i],SZ,inf,0),add(X2[n+(n-K+1)+i],SZ,inf,0);
add(SZ,T,K-t1-t2,0);
}
for(RI i=K+1;i<=n;++i) {
++SZ,add(X2[i],SZ,inf,0),add(S,SZ,K-t1-t2,0);
add(SZ,X1[i-K],inf,0),add(SZ,X1[(i-K)+n+1],inf,0);
add(SZ,X1[n+(n-K+1)+(i-K)],inf,0);
}
++SZ,add(S,SZ,K-t2,0),add(SZ,X1[n+(n-K+1)*2],inf,0);
for(RI i=n-K+1;i<=n;++i) add(SZ,X1[i],inf,0);
for(RI i=1;i<=n;++i) add(X1[i],X2[i],1,game[i]-sleep[i]),pos[i]=tot;
for(RI i=n+1;i<=n+(n-K+1)*2;++i) add(X1[i],X2[i],inf,0),pos[i]=tot;
}
int bfs() {
for(RI i=1;i<=SZ;++i) inq[i]=pre[i]=0,dis[i]=inf;
queue<int> q; liu[S]=inf,dis[S]=0,q.push(S);
while(!q.empty()) {
int x=q.front();q.pop(),inq[x]=0;
for(RI i=h[x];i;i=ne[i]) {
if(flow[i]>0&&dis[x]+w[i]<dis[to[i]]) {
dis[to[i]]=dis[x]+w[i],pre[to[i]]=i;
liu[to[i]]=min(liu[x],flow[i]);
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
if(!pre[T]) return 0;
ans-=liu[T]*dis[T]; int x=T;
while(x!=S) {
int kl=pre[x];
flow[kl]-=liu[T],flow[kl^1]+=liu[T],x=to[kl^1];
}
return 1;
}
int main()
{
scanf("%d%d%d%d",&n,&K,&t1,&t2);
for(RI i=1;i<=n;++i) scanf("%d",&sleep[i]);
for(RI i=1;i<=n;++i) scanf("%d",&game[i]),ans+=(LL)game[i];
build();while(bfs());
printf("%lld\n",ans);
for(RI i=1;i<=n;++i) putchar(flow[pos[i]]?'S':'E');
return 0;
}