codeforces 1107E Vasya and Binary String DP

题目分析

听说是个DP经典套路?

f ( i ) f(i) f(i)表示 i i i个一样的连在一起的元素,被消完的最大分数,一个完全背包可以搞定。

然后将连续的一段相同元素合成一个点,原序列变成了若干黑白交错的点,记点 i i i中的元素个数为 s z ( i ) sz(i) sz(i)

g ( l , r , k ) g(l,r,k) g(l,r,k)表示现在要消完 [ l , r ] [l,r] [l,r]这一段点(和后面的 k k k个元素),点 r r r后面有 k k k个与 r r r点颜色相同的元素。那么 r r r可以选择跟前面的元素一起消,也可以不一起消。

不一起消: g ( l , r − 1 , 0 ) + f ( s z ( r ) + k ) g(l,r-1,0)+f(sz(r)+k) g(l,r1,0)+f(sz(r)+k)

一起消:( i i i [ l , r − 1 ] [l,r-1] [l,r1]中一个和 r r r颜色相同的点) g ( i + 1 , r − 1 , 0 ) + g ( l , i , k + s z ( r ) ) g(i+1,r-1,0)+g(l,i,k+sz(r)) g(i+1,r1,0)+g(l,i,k+sz(r))

记忆化搜索,跑不满,加上CF评测姬快如闪电,可以过。

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
typedef long long LL;
const int N=105;
int n,cnt;LL a[N],f[N],g[N][N][N];char S[N];
struct node{int sz,col;}b[N];

void prework() {
    for(RI i=1;i<=n;++i)
        for(RI j=i;j<=n;++j) f[j]=max(f[j],f[j-i]+a[i]);
    int now=0;
    for(RI i=1;i<=n;++i) {
        if(i==1||S[i]==S[i-1]) ++now;
        else ++cnt,b[cnt].sz=now,b[cnt].col=S[i-1]-'0',now=1;
    }
    ++cnt,b[cnt].sz=now,b[cnt].col=S[n]-'0';
}
LL DP(int l,int r,int k) {
    if(l==r) {return g[l][r][k]=f[b[l].sz+k];}
    if(g[l][r][k]!=-1) return g[l][r][k];
    LL re=DP(l,r-1,0)+f[b[r].sz+k];
    for(RI i=l;i<r-1;++i)
        if(b[i].col==b[r].col)
            re=max(re,DP(i+1,r-1,0)+DP(l,i,b[r].sz+k));
    return g[l][r][k]=re;
}
int main()
{
    scanf("%d",&n);
    scanf("%s",S+1);
    for(RI i=1;i<=n;++i) scanf("%lld",&a[i]);
    prework();
    memset(g,-1,sizeof(g));
    printf("%lld\n",DP(1,cnt,0));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值