bzoj5493/洛谷P5293/loj3058 [HNOI2019]白兔之舞 单位根反演+MTT+矩阵快速幂

题目分析

A A A为给定的矩阵。

余数为 t t t时的答案为:

∑ i = 0 L C L i A i [ i   m o d   k = t ] \sum_{i=0}^LC_L^iA^i[i \bmod{k}=t] i=0LCLiAi[imodk=t]

已知单位根反演的式子 1 k ∑ i = 0 k − 1 ω k i n = [ k ∣ n ] \frac{1}{k} \sum_{i=0}^{k-1} \omega_k^{in}=[k|n] k1i=0k1ωkin=[kn]

操作一下后得到:

1 k ∑ j = 0 k − 1 ( ω k j A + I ) L ω − t j \frac{1}{k} \sum_{j=0}^{k-1} (\omega_k^jA+I)^L \omega^{-tj} k1j=0k1(ωkjA+I)Lωtj

因为 − t j = C t 2 + C j 2 − C t + j 2 -tj=C_t^2+C_j^2-C_{t+j}^2 tj=Ct2+Cj2Ct+j2

所以原式化为

1 k ω k C t 2 ∑ j = 0 k − 1 ( ω k C j 2 ( ω k j A + I ) L ) ( ω k − C t + j 2 ) \frac{1}{k}\omega_k^{C_t^2} \sum_{j=0}^{k-1} (\omega_k^{C_j^2}(\omega_k^jA+I)^L)(\omega_k^{-C_{t+j}^2}) k1ωkCt2j=0k1(ωkCj2(ωkjA+I)L)(ωkCt+j2)

a k − 1 − i = ω k C i 2 ( ω k i A + I ) L a_{k-1-i}=\omega_k^{C_i^2}(\omega_k^iA+I)^L ak1i=ωkCi2(ωkiA+I)L b i = ω k − C i 2 b_i=\omega_k^{-C_i^2} bi=ωkCi2,上面的式子就是个卷积的形式。

用个MTT即可解决。

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int n,K,invK,L,x,y,P,w,g;
struct matrix{int t[4][4];}A,I;

int qm(int x) {return x>=P?x-P:x;}
int ksm(int x,int y) {
	int re=1;
	for(;y;y>>=1,x=1LL*x*x%P) if(y&1) re=1LL*re*x%P;
	return re;
}
inline matrix operator * (matrix A,matrix B) {
	matrix C;
	for(RI i=0;i<n;++i)
		for(RI j=0;j<n;++j) C.t[i][j]=0;
	for(RI k=0;k<n;++k)
		for(RI i=0;i<n;++i)
			for(RI j=0;j<n;++j)
				C.t[i][j]=qm(C.t[i][j]+1LL*A.t[i][k]*B.t[k][j]%P);
	return C;
}
inline matrix operator + (matrix A,matrix B) {
	for(RI i=0;i<n;++i)
		for(RI j=0;j<n;++j) A.t[i][j]=qm(A.t[i][j]+B.t[i][j]);
	return A;
}
inline matrix operator * (matrix A,int B) {
	for(RI i=0;i<n;++i)
		for(RI j=0;j<n;++j) A.t[i][j]=1LL*B*A.t[i][j]%P;
	return A;
}
matrix ksm(matrix X,int y) {
	matrix re=I;
	for(;y;y>>=1,X=X*X) if(y&1) re=re*X;
	return re;
}

int getg() {
	int kP=P-1,js=0,pri[30];
	for(RI i=2;i*i<=kP;++i)
		if(kP%i==0) {pri[++js]=i;while(kP%i==0) kP/=i;}
	if(kP!=1) pri[++js]=kP;
	for(RI i=2;;++i) {
		int flag=1;
		if(ksm(i,P-1)!=1) continue;
		for(RI j=1;j<=js;++j)
			if(ksm(i,(P-1)/pri[j])==1) {flag=0;break;}
		if(flag) return i;
	}
}

typedef long double db;
typedef long long LL;
const int N=262150,M=32767;
const db pi=acos(-1);
int ka[N],kb[N],kc[N],rev[N];
struct com{db r,i;}a[N],b[N],Aa[N],Ab[N],Ba[N],Bb[N];
com operator + (com A,com B) {return (com){A.r+B.r,A.i+B.i};}
com operator - (com A,com B) {return (com){A.r-B.r,A.i-B.i};}
com operator * (com A,com B) {return (com){A.r*B.r-A.i*B.i,A.r*B.i+A.i*B.r};}
com conj(com A) {return (com){A.r,-A.i};}
void FFT(com *a,int n) {
	for(RI i=0;i<n;++i) if(rev[i]>i) swap(a[i],a[rev[i]]);
	for(RI i=1;i<n;i<<=1) {
		com wn=(com){cos(pi/i),sin(pi/i)};
		for(RI j=0;j<n;j+=(i<<1)) {
			com t1,t2,w=(com){1,0};
			for(RI k=0;k<i;++k,w=w*wn)
				t1=a[j+k],t2=w*a[j+i+k],a[j+k]=t1+t2,a[j+i+k]=t1-t2;
		}
	}
}
void MTT(int n) {
	for(RI i=0;i<n;++i) {
		a[i]=(com){(db)(ka[i]&M),(db)(ka[i]>>15)};
		b[i]=(com){(db)(kb[i]&M),(db)(kb[i]>>15)};
	}
	FFT(a,n),FFT(b,n);
	for(RI i=0;i<n;++i) {
		int j=(n-i)&(n-1);
		com kAa=(a[i]+conj(a[j]))*(com){0.5,0};
		com kAb=(a[i]-conj(a[j]))*(com){0,-0.5};
		com kBa=(b[i]+conj(b[j]))*(com){0.5,0};
		com kBb=(b[i]-conj(b[j]))*(com){0,-0.5};
		Aa[j]=kAa*kBa,Ab[j]=kAa*kBb,Ba[j]=kAb*kBa,Bb[j]=kAb*kBb;
	}
	for(RI i=0;i<n;++i)
		a[i]=Aa[i]+Ab[i]*(com){0,1},b[i]=Ba[i]+Bb[i]*(com){0,1};
	FFT(a,n),FFT(b,n);
	for(RI i=0;i<n;++i) {
		int kAa=(LL)(a[i].r/n+0.5)%P;
		int kAb=(LL)(a[i].i/n+0.5)%P;
		int kBa=(LL)(b[i].r/n+0.5)%P;
		int kBb=(LL)(b[i].i/n+0.5)%P;
		kc[i]=((LL)kAa+((LL)(kAb+kBa)<<15)+((LL)kBb<<30))%P;
	}
}

int C2(int x) {return (1LL*x*(x-1)/2)%(P-1);}
int main()
{
	scanf("%d%d%d%d%d%d",&n,&K,&L,&x,&y,&P),--x,--y;
	for(RI i=0;i<n;++i)
		for(RI j=0;j<n;++j) scanf("%d",&A.t[i][j]);
	for(RI i=0;i<n;++i) I.t[i][i]=1;
	g=getg(),w=ksm(g,(P-1)/K);
	for(RI i=0,ww=1;i<K;++i,ww=1LL*ww*w%P) {
		matrix tmp=ksm(A*ww+I,L);
		ka[K-1-i]=1LL*ksm(w,C2(i))*tmp.t[x][y]%P;
	}
	for(RI i=0;i<=2*K-2;++i) kb[i]=ksm(ksm(w,C2(i)),P-2);
	int kn=1,len=0;
	while(kn<=3*K-3) kn<<=1,++len;
	for(RI i=0;i<kn;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));
	MTT(kn),invK=ksm(K,P-2);
	for(RI i=0;i<K;++i) printf("%lld\n",1LL*invK*ksm(w,C2(i))%P*kc[K+i-1]%P);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值