对于一点出的导数无法确定单调性这一理解
今天做宇哥的18讲,碰到这个问题后整理了很多想法,最后汇总到一起,算是理解了一点点
用我自己的语言来讲述一下,看了好多都是举例,但是单纯的举例无法说明根本的问题,我的理解主要是从振荡间断点出发
对于一点处的导数值,假设>0,再假设这个点的x为0,其实没有啥用,别的点也一样,当这一点的函数值具备两个特点,一是整体看起来有一个斜率,二是微观上看是一个振荡,可以带入一个斜的
sin(1/x)去想象,这个时候如果存在一个足够小的正数δ,根据导数的极限定义可以得出在(0,δ)或者(-δ,0)存在f(x)> f (0) 或者 f(x)< f(0),但是这个时候无论δ多小,函数都会在这个区间处于振荡阶段,一上一下,不可能具有单调性,可能我的也是从举例子出发,但比起具体函数还是抽象一点。
从这一想法出发,如果存在三阶导数,间接证明二阶导数连续,即可证明这个函数的单调性