P1352 没有上司的舞会 分治法解决

描述

有个公司要举行一场晚会。
为了能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会邀请他的上司
(上司的上司,上司的上司的上司……都可以邀请)。
题目
每个参加晚会的人都能为晚会增添一些气氛,求一个邀请方案,使气氛值的和最大。

输入

第1行一个整数N(1<=N<=6000)表示公司的人数。
接下来N行每行一个整数。第i行的数表示第i个人的气氛值x(-128<=x<=127)。
接下来每行两个整数L,K。表示第K个人是第L个人的上司。
输入以0 0结束。

输出

一个数,最大的气氛值和。

样例

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

输出

5

查询了一些帖子,大多用的是动态规划,但对于本题来说有一些小题大做,
动态规划不好理解也不好做出来,尤其是递推过程难以理解,所以我采用分治方法,原理如下:

创建节点记录自身的快乐值、直接下属与该节点为树根的子树的快乐最大值,对于这个节点的直接领导而言,以他为根的子树的快乐最大值存在两种可能:
1、每一颗下属子树的快乐最大值不包括直接下属参与
2、若干下属子树的快乐最大值包括直接下属参与

当前根参与的舞会后,直接下属的均放弃舞会,所以计算当前根的快乐最大值时需要从两种情况中考虑最大值:
1、当前根代表的领导不参与舞会
2、当前根代表的领导参与舞会

第一种情况下,将每一棵子树所代表的最大快乐值相加即可,第二种情况下,将参与舞会的直接下属从快乐值中剔除,比较这两种情况的最大值,写入当前根,并确定当前根的领导是否参与舞会。依次求上层的节点快乐值。直至求出根节点的最大值。

typedef struct node {
	int data;
	int count;
	node *link[6000];
	int childs;
	int tag;
}node;

void comprise(node* root) {
	if(root->childs == 0){
		root->count = root->data;
		root->tag = 1;
		return;
	}
	else {
		for (int i = 0; i < root->childs; i ++) {
			//递归调用
			comprise(root->link[i]);
		}
	}
	int result = root->data;
//	有领导参加
	int result_1 = 0;
//	无领导参加
	for(int i = 0; i < root->childs; i++){
		result += root->link[i]->count - root->link[i]->tag * root->link[i]->data;
		result_1 += root->link[i]->count;
	}
	//比较两值
	if (result > result_1) {
		root->tag = 1;
		root->count = result;
	}
	else {
		root->tag = 0;
		root->count = result_1;
	}
	return;
}



int main() {
	node *root;
	int number;
	scanf("%d", &number);
	int tag[number];//记录树根
		for (int i = 0; i < number; i ++) {
			tag[i] = 0;
		}
		node *array[number];
	for (int i = 0; i < number; i ++) {
		int temp;
		scanf("%d", &temp);
		array[i] = (node*)malloc(sizeof(node));
		array[i]->childs = 0;
		array[i]->data = temp;
		array[i]->count = 0;
		array[i]->tag = 0;
	}
	for (int i = 0; i < number - 1; i ++) {
		int employee, employer;
		scanf("%d%d", &employee, &employer);
		tag[employee - 1] = -1;
		array[employer - 1]->link[array[employer - 1]->childs] = array[employee - 1];
		array[employer - 1]->childs ++;
	}
	for (int i = 0; i < number; i ++) {
		if (tag[i] == 0) {
			root = array[i];
		}
	}
	//分而治之
	comprise(root);
	printf("%d", root->count);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值