描述
有个公司要举行一场晚会。
为了能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会邀请他的上司
(上司的上司,上司的上司的上司……都可以邀请)。
题目
每个参加晚会的人都能为晚会增添一些气氛,求一个邀请方案,使气氛值的和最大。
输入
第1行一个整数N(1<=N<=6000)表示公司的人数。
接下来N行每行一个整数。第i行的数表示第i个人的气氛值x(-128<=x<=127)。
接下来每行两个整数L,K。表示第K个人是第L个人的上司。
输入以0 0结束。
输出
一个数,最大的气氛值和。
样例
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
输出
5
查询了一些帖子,大多用的是动态规划,但对于本题来说有一些小题大做,
动态规划不好理解也不好做出来,尤其是递推过程难以理解,所以我采用分治方法,原理如下:
创建节点记录自身的快乐值、直接下属与该节点为树根的子树的快乐最大值,对于这个节点的直接领导而言,以他为根的子树的快乐最大值存在两种可能:
1、每一颗下属子树的快乐最大值不包括直接下属参与
2、若干下属子树的快乐最大值包括直接下属参与
当前根参与的舞会后,直接下属的均放弃舞会,所以计算当前根的快乐最大值时需要从两种情况中考虑最大值:
1、当前根代表的领导不参与舞会
2、当前根代表的领导参与舞会
第一种情况下,将每一棵子树所代表的最大快乐值相加即可,第二种情况下,将参与舞会的直接下属从快乐值中剔除,比较这两种情况的最大值,写入当前根,并确定当前根的领导是否参与舞会。依次求上层的节点快乐值。直至求出根节点的最大值。
typedef struct node {
int data;
int count;
node *link[6000];
int childs;
int tag;
}node;
void comprise(node* root) {
if(root->childs == 0){
root->count = root->data;
root->tag = 1;
return;
}
else {
for (int i = 0; i < root->childs; i ++) {
//递归调用
comprise(root->link[i]);
}
}
int result = root->data;
// 有领导参加
int result_1 = 0;
// 无领导参加
for(int i = 0; i < root->childs; i++){
result += root->link[i]->count - root->link[i]->tag * root->link[i]->data;
result_1 += root->link[i]->count;
}
//比较两值
if (result > result_1) {
root->tag = 1;
root->count = result;
}
else {
root->tag = 0;
root->count = result_1;
}
return;
}
int main() {
node *root;
int number;
scanf("%d", &number);
int tag[number];//记录树根
for (int i = 0; i < number; i ++) {
tag[i] = 0;
}
node *array[number];
for (int i = 0; i < number; i ++) {
int temp;
scanf("%d", &temp);
array[i] = (node*)malloc(sizeof(node));
array[i]->childs = 0;
array[i]->data = temp;
array[i]->count = 0;
array[i]->tag = 0;
}
for (int i = 0; i < number - 1; i ++) {
int employee, employer;
scanf("%d%d", &employee, &employer);
tag[employee - 1] = -1;
array[employer - 1]->link[array[employer - 1]->childs] = array[employee - 1];
array[employer - 1]->childs ++;
}
for (int i = 0; i < number; i ++) {
if (tag[i] == 0) {
root = array[i];
}
}
//分而治之
comprise(root);
printf("%d", root->count);
return 0;
}