五种模型(支持向量机,随机森林,线性回归,多项式回归,岭回归)对新型冠状病毒的历史数据进行预测

本文通过爬取新型冠状病毒数据,并运用Python的多种机器学习模型进行分析预测,包括支持向量机、随机森林、线性回归等,展示了不同模型在疫情预测上的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据来源

上篇文章对新型冠状病毒的数据进行了爬取,本文利用爬取到的数据进行一些数据分析。
爬虫教学连接
本文使用的jupyter进行数据分析(2021年1月1日到4月14日的数据
其中,4月12到4月14日的数据用于预测与模型评估(均方误差作为评价标准))

知识预备

python的基本操作语句
python的库
numpy
pandas
matplotlib
五种模型的思想与sklearn库的五种模型的调用。

升级思路

可以爬中国各个省市的数据然后绘制空间图。
空间图绘制方法:
首先进行经纬度匹配:可以参考匹配经纬度 这篇文章
常用空间绘图工具(echarts,Qgis(wgs84),excel(火星坐标))
qgis操作可以参考这篇文章Qgis,操作不难。
可以将平面图升级为seaborn,或bokeh库绘制
时间序列模型也可以增加ARMA模型进行预测。(不要用传染病模型,不太好用,那个是封闭区间的,但是新冠这个与那个有本质的区别,当然有个最新升级的版本,我也没看过,可能可以用)

实现过程

  1. 导包,没什么可说的
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.colors as mcolors
import pandas as pd 
import random
import math
import time
from dateutil.parser import parse
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV, train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, mean_absolute_error
#from sklearn import  linear_model
#导入线性模型和多项式特征构造模块
from sklearn.preprocessing import  PolynomialFeatures
from sklearn.linear_model import Ridge
import datetime
%matplotlib inline 
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
nameMap = {
   '毛里求斯':'Mauritius','圣皮埃尔和密克隆群岛':'St. Pierre and Miquelon','安圭拉':'Anguilla','荷兰加勒比地区':'Caribbean Netherlands','圣巴泰勒米岛':'Saint Barthelemy','英属维尔京群岛':'British Virgin Is.','科摩罗':'Comoros','蒙特塞拉特':'Montserrat','塞舌尔':'Seychelles','特克斯和凯科斯群岛':'Turks and Caicos Is.','梵蒂冈':'Vatican','圣其茨和尼维斯':'Saint Kitts and Nevis','库拉索岛':'Curaçao','多米尼克':'Dominica','圣文森特和格林纳丁斯':'St. Vin. and Gren.','斐济':'Fiji','圣卢西亚':'Saint Lucia','北马里亚纳群岛联邦':'N. Mariana Is.','格林那达':'Grenada','安提瓜和巴布达':'Antigua and Barb.','列支敦士登':'Liechtenstein','圣马丁岛':'Saint Martin','法属波利尼西亚':'Fr. Polynesia','美属维尔京群岛':'U.S. Virgin Is.','荷属圣马丁':'Sint Maarten','巴巴多斯':'Barbados','开曼群岛':'Cayman Is.','摩纳哥':'Monaco','阿鲁巴':'Aruba','特立尼达和多巴哥':'Trinidad and Tobago','钻石公主号邮轮':'Princess','瓜德罗普岛':'Guadeloupe','关岛':'Guam','直布罗陀':'Gibraltar','马提尼克':'Martinique','马耳他':'Malta','法罗群岛':'Faeroe Is.','圣多美和普林西比':'São Tomé and Principe','安道尔':'Andorra','根西岛':'Guernsey','泽西岛':'Jersey','佛得角':'Cape Verde','马恩岛':'Isle of Man','留尼旺':'Reunion','圣马力诺':'San Marino','马尔代夫':'Maldives','马约特':'Mayotte','巴林':'Bahrain','新加坡': 'Singapore Rep.', '多米尼加': 'Dominican Rep.', '巴勒斯坦': 'Palestine', '巴哈马': 'The Bahamas', '东帝汶': 'East Timor', '阿富汗': 'Afghanistan', '几内亚比绍': 'Guinea Bissau', '科特迪瓦': "Côte d'Ivoire", '锡亚琴冰川': 'Siachen Glacier', '英属印度洋领土': 'Br. Indian Ocean Ter.', '安哥拉': 'Angola', '阿尔巴尼亚': 'Albania', '阿联酋': 'United Arab Emirates', '阿根廷': 'Argentina', '亚美尼亚': 'Armenia', '法属南半球和南极领地': 'French Southern and Antarctic Lands', '澳大利亚': 'Australia', '奥地利': 'Austria', '阿塞拜疆': 'Azerbaijan', '布隆迪共和国': 'Burundi', '比利时': 'Belgium', '贝宁': 'Benin', '布基纳法索': 'Burkina Faso', '孟加拉国': 'Bangladesh', '保加利亚': 'Bulgaria', '波黑': 'Bosnia and Herz.', '白俄罗斯': 'Belarus', '伯利兹': 'Belize', '百慕大': 'Bermuda', '玻利维亚': 'Bolivia', '巴西': 'Brazil', '文莱': 'Brunei', '不丹': 'Bhutan', '博茨瓦纳': 'Botswana', '中非共和国': 'Central African Rep.', '加拿大': 'Canada', '瑞士': 'Switzerland', '智利': 'Chile', '中国': 'China', '象牙海岸': 'Ivory Coast', '喀麦隆': 'Cameroon', '刚果(金)': 'Dem. Rep. Congo', '刚果(布)': 'Congo', '哥伦比亚': 'Colombia', '哥斯达黎加': 'Costa Rica', '古巴': 'Cuba', '北塞浦路斯': 'N. Cyprus', '塞浦路斯': 'Cyprus', '捷克': 'Czech Rep.', '德国': 'Germany', '吉布提': 'Djibouti', 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_yuan20

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值