贝叶斯Bayes定理是怎么想出来的?

看了贝叶斯定理,大多数文章都一步步解释贝叶斯公式,用抽象的实例如计算发病率,计算吸毒率甚至计算渣女的概率解释这个伟大的公式,又为此搞出一堆“先验率”、“后验率”等抽象的词汇解释公式内涵。一个命题还没有说清楚又搞出一些新词汇、新概念反而污染了公式本身的纯粹性和朴实性。

我们试图想象贝叶斯是怎么想出这个定理?都是人类为什么他能想出来,他的思维逻辑怎么形成的,这个问题说明白了对人类从事工作有着重要意义。而不是死记别人公式,用一个个概念骗人,冠冕堂皇的说成“术语”。

假设有A集合,B集合,A和B有交集,A+B是全集,这就是贝叶斯所知道的已知条件。贝叶斯喜欢琢磨,琢磨什么呢?就是A和B都是概率,A∩B这个概率怎么表示,因为当一些人琢磨八股文用毕生精力搏取功名的时候,贝叶斯的追求是怎么用公式表达自然界,越简单越好,至于之后能用到哪里不是他关心的事。。。。

因为A与B有交集,那么B在A里占比多少?A在B里占比多少?先不管他是不是概率,Thomas Bayes给出了第一个抽象表示,即
A∩B/B,交集在B里的占比,反之A∩B/A是交集在A里的占比,再简化表示一下,
A|B=A∩B/B (1)交集在B里占比
B|A=A∩B/A (2)交集在A里的占比
公式(1)和(2)里有公用项,Thomas Bayes毫不犹豫的抵消公用项以简化公式,即
A|B/(B|A)=A/B
如以上A,B代指不同事件的概率,即
P(A|B)=P(A)*P(B|A)/P(B) (3)
公式(3)就是大名鼎鼎的贝叶斯定理公式,这个公式在其死后被发现,对条件概率有巨大贡献。
也就是说
P(A),P(B)分别代表两个不同事件的发生概率,贝爷想知道,B事件发生时,A发生的概率P(A|B),该概率等同于P(A)和一个因子结合,这个因子就是P(B|A)/P(B),也就是说,A事件发生时,B发生的概率与P(B)的比。

进一步说,

想计算B事件发生时,A发生的概率可以理解成A本身的概率受一个因子干扰,这个因子可能放大A本身的概率,也可能降低A本身的概率,如果A发生时,B发生概率越大,P(A|B)越大,成正比,反之,P(B)越大,P(A|B)越小,成反比。

所以,女孩去夜店次数越多,是渣女的概率就越大,P(渣女|夜店)=P(渣女)* P(夜店|渣女)/ P(夜店), 关键因子P(夜店|渣女),渣女多出现在夜店这个事实增强了夜店里的女孩是渣女的概率。

那么可以用简短的一句话概括贝爷的定理:

P(A|B)与P(B|A)成正比,与P(B)成反比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值