用pyspark学习《应用预测建模》(三)PCA

本文探讨了如何使用Spark的Scala实现PCA(主成分分析),这是一种无监督的降维方法。文章指出,虽然Spark SQL的抽象度较高,但PCA主要依赖于RDD。在Spark中,PCA通过调用mllib.feature.PCA并利用RowMatrix的computePrincipalComponentsAndExplainedVariance方法,该方法基于SVD(奇异值分解)。作者提到了,对于特征数量小于65535的情况,Breeze库的SVD用于对协方差矩阵进行对角化。对比scikit-learn的PCA实现,Spark的实现略显不同,它不直接对原矩阵进行SVD,而是先计算协方差矩阵。尽管如此,两者的SVD底层都依赖于LAPACK等线性代数库。
摘要由CSDN通过智能技术生成

在前面的文章中,用到了PCA,主成分分析,一种无监督降维的方法。我们来看看spark实现pca的代码。spark主要是用scala实现的,scala这门语言很奇特,spark rdd可读性还可以,但是spark sql抽象程度大大提升,阅读难度较大。好在spark sql的pca也是借助rdd实现的。

import org.apache.spark.mllib.feature

override def fit(dataset: Dataset[_]): PCAModel = {
    transformSchema(dataset.schema, logging = true)
    val input = dataset.select($(inputCol)).rdd.map {
      case Row(v: Vector) => OldVectors.fromML(v)
    }
    val pca = new feature.PCA(k = $(k))
    val pcaModel = pca.fit(input)
    copyValues(new PCAModel(uid, pcaModel.pc.asML, pcaModel.explainedVariance.asML)
      .setParent(this))
  }

看到调用了mllib.feature.PCA

val mat = if (numFeatures > 65535) {
  val summary = Statistics.colStats(sources.map((_, 1.0)), Seq("mean"))
  val mean = Vectors.fromML(summary.mean)
  val meanCenteredRdd = sources.map { row =>
    BLAS.axpy(-1, mean, row)
    row
  }
  new RowMatrix(meanCenteredRdd)
} else {
  require(PCAUtil.memoryCost(k, numFeatures) < Int.MaxValue,
    "The param k and numFeatures is too large for SVD computation. " +
      "Try reducing the parameter k for PCA, or reduce the inpu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值