R语言 牛顿-拉夫森迭代法求方程组

本文介绍了如何使用R语言的牛顿-拉夫森迭代法求解非线性方程组。通过示例展示了具体步骤,包括计算Jacobi矩阵,并给出初始值选择的重要性。经过迭代,得出解与使用rootSolve包得到的结果相符。
摘要由CSDN通过智能技术生成

点击下方图片查看HappyChart专业绘图软件

HappyChart专业绘图软件

牛顿-拉夫森迭代法:
x k + 1 = x k − [ f ′ ( x ) ] − 1 f ( x ) x_{k+1}=x_{k}-{[f'(x)]^{-1}}f(x) xk+1=xk[f(x)]1f(x)
其中, f ′ ( x ) f'(x) f(x)为Jacobi矩阵。
例,设非线性方程组为:
x 2 + y 2 = 1 , x^2+y^2=1, x2+y2=1,
y 2 = 2 x y^2=2x y2=2x
求方程组的解。
Jocabi行列式:
雅克比式
R代码如下:


fun <- function(x){
  f <- c(x[1]^2+x[2]^2-1, x[2]^2-2*x[1])
  joc <- matrix(c(2*x[1],-2,2*x[2],2*x[2]),nr=2)
  list(f=f,jac=jac)
}

Newton <-function(fun, x,eps = 1e-5){
  k <- 0
  repeat{
  k <- k+1
    x1 <- x
    obj <- fun(x)
    x <- x - solve(obj$jac,obj$f)
    if((x-x1)%*%(x-x1)<eps){
      return(list(root=x,iter=k))
      break
    }
  }
}

最后设初始值为c(1,1.2). 注: 选择初始值必须式Jacobi行列式不为零。

Newton(fun,c(1,1.2)

$root
[1] 0.4142136 0.9101797

$iter
[1] 4
而利用rootSolve包解方程组multiroot(model,c(1,1.2)解出结果与上述结果一致,而迭代次数为5.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值