金融计量
文章平均质量分 69
littlely_ll
Strive for the best, and prepare for the worst.
展开
-
单位根检验、协整检验和格兰杰因果检验三者之间的关系
实证检验步骤\quad先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行G原创 2017-01-05 11:44:36 · 54462 阅读 · 8 评论 -
单方程误差修正模型案例分析
># 单方程误差修正模型案例分析> ###########################> # 数据的生成> set.seed(12345)> u<-rnorm(500)> x<-cumsum(u)> y<-x+u> # E-G协整估计及检验> model.lm<-lm(y~x)> summary(model.lm)Call:lm(formula = y ~ x)Re原创 2017-02-04 21:26:42 · 5075 阅读 · 1 评论 -
GARCH模型案例分析
read datalibrary(quantmod)# 加载包getSymbols('^HSI', from='1989-12-01',to='2013-11-30')# 从Yahoo网站下载恒生指数日价格数据dim(HSI)# 数据规模names(HSI)# 数据变量名称chartSeries(HSI,theme='white')# 画出价格与交易的时...原创 2017-02-04 21:26:34 · 45005 阅读 · 10 评论 -
ARCH模型和GARCH模型
(1)基于ARCH(1)模型模拟生成收益序列,残差序列和波动率序列library(fGarch)set.seed(1234)#模型的设定spec_1#模型的模拟simdata_1原创 2017-02-04 21:26:31 · 22833 阅读 · 0 评论 -
季节趋势分解
wx #必须转化为时间序列格式(1)用stl函数直接做季节分解bstlplot(bstl)(2)用HoltWinters函数做指数平滑或季节分解(这里趋势和水平结合起来相当于stl中的趋势项)(bHolt-Winters exponential smoothing with trend and additiveseasonal component.Call:Holt原创 2017-02-04 21:26:28 · 5047 阅读 · 0 评论 -
向量自回归与结构向量误差修正模型
(一)在R软件中,使用vars包来进行VAR、SVAR和SVECM的建模。首先列出函数的使用。 1.VAR模型VAR(y, p=1, type=c("const","trend", "both", "none"), season=NULL, exogen=NULL, lag.max=NULL,ic=c("AIC", "HQ", "SC", "FPE"))y是一个数据矩阵;p为原创 2017-02-04 21:27:06 · 10610 阅读 · 2 评论 -
移动平均和指数平滑
(1)简单移动平均移动平均在TTR包中 简单移动平均 SMA(x, n = 10, ...)指数移动平均 EMA(x, n = 10, wilder = FALSE, ratio = NULL,...) For EMA,wilder=FALSE (the default) uses an exponential smoothing ratio of2/(n+1),原创 2017-02-04 21:26:37 · 3077 阅读 · 0 评论 -
单位根检验、协整检验和格兰杰因果…
实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Gran原创 2017-02-04 21:26:40 · 35424 阅读 · 1 评论 -
向量误差修正(VECM)模型案例分析
向量误差修正模型案例分析生成数据set.seed(12345) u1<-rnorm(500) u2<-arima.sim(list(ar=0.6),n=500) #生成模拟的一阶自回归模型 u3<-arima.sim(list(ar=.4),n=500) y1<-cumsum(u1) #生成随机游走序列 y1 y2<-0.4*y1+u2 y3<...原创 2017-02-04 21:26:45 · 42945 阅读 · 1 评论