GARCH模型案例分析

本文通过案例详细分析了GARCH模型的构建过程,包括数据读取、收益率计算、ARCH效应检验、模型定阶、GARCH类模型的建立与信息提取、模型检验和预测,最后进行了模型选择,为金融时间序列分析提供了实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 read data

library(quantmod)  # 加载包
getSymbols('^HSI', from='1989-12-01',to='2013-11-30')  # 从Yahoo网站下载恒生指数日价格数据
dim(HSI)   # 数据规模
names(HSI)  # 数据变量名称
chartSeries(HSI,theme='white')  # 画出价格与交易的时序图

HSI <-read.table('HSI.txt')  # 或者从硬盘中读取恒生指数日价格数据
HSI <-as.xts(HSI)  # 将数据格式转化为xts格式

compute return series

ptd.HSI <-HSI$HSI.Adjusted   # 提取日收盘价信息
rtd.HSI <-diff(log(ptd.HSI))*100   # 计算日对数收益
rtd.HSI <-rtd.HSI[-1,]   # 删除一期缺失值
plot(rtd.HSI)   # 画出日收益序列的时序图

​编辑​编辑

ptm.HSI <-to.monthly(HSI)$HSI.Adjusted    # 提取月收盘价信息
rtm.HSI <-diff(log(ptm.HSI))*100   # 计算月对数收益
rtm.HSI <-rtm.HSI[-1,]   # 删除一期缺失值
plot(rtm.HSI)   # 画出月收益序列的时序图

detach(package:quantmod)

ARCH效应检验

# rtm.HSI <- as.numeric(rtm.HSI)
ind.outsample <- sub(' ','',substr(index(rtm.HSI), 4, 8)) %in%'2013'  #设置样本外下标:2013年为样本外
ind.insample <-!ind.outsample   # 设置样本内下标:其余为样本内
rtm.insample <- rtm.HSI[ind.insample]
rtm.outsample <- rtm.HSI[ind.outsample]
Box.test(rtm.insample, lag=12,type='Ljung-Box')  # 月收益序列不存在自相关
Box.test(rtm.insample^2, lag=12,type='Ljung-Box')   # 平方月收益序列存在自相关

FinTS::ArchTest(x=rtm.insample,lags=12)  # 存在显著的ARCH效应

模型定阶

epst <- rtm.insample -mean(rtm.insample)   # 均值调整对数收益
par(mfrow=c(1,2))
acf(as.numeric(epst)^2, lag.max=20, main='平方序列')
pacf(as.numeric(epst)^2, lag.max=20,main='平方序列')  

                    

建立GARCH类模型

library(fGarch)
GARCH.model_1 <- garchFit(~garch(1,1), data=rtm.insample,trace=FALSE)  # GARCH(1,1)-N模型
GARCH.model_2 <- garchFit(~garch(2,1), data=rtm.insample,trace=FALSE)   # GARCH(1,2)-N模型
GARCH.model_3 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='std', trace=FALSE)   #GARCH(1,1)-t模型
GARCH.model_4 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sstd', trace=FALSE)  #GARCH(1,1)-st模型
GARCH.model_5 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='ged', trace=FALSE)   #GARCH(1,1)-GED模型
GARCH.model_6 <- garchFit(~garch(1,1), data=rtm.insample,cond.dist='sged', trace=FALSE)  #GARCH(1,1)-SGED模型

summary(GARCH.model_1)
summary(GARCH.model_3)

plot(GARCH.model_1)

提取GARCH类模型信息

vol_1 <-fBasics::volatility(GARCH.model_1)   # 提取GARCH(1,1)-N模型得到的波动率估计
sres_1 <- residuals(GARCH.model_1,standardize=TRUE)   # 提取GARCH(1,1)-N模型得到的标准化残差
vol_1.ts <- ts(vol_1, frequency=12, start=c(1990, 1))
sres_1.ts <- ts(sres_1, frequency=12, start=c(1990, 1))
par(mfcol=c(2,1))
plot(vol_1.ts, xlab='年', ylab='波动率')
plot(sres_1.ts, xlab='年', ylab='标准化残差')


模型检验

par(mfrow=c(2,2))
acf(sres_1, lag=24)
pacf(sres_1, lag=24)
acf(sres_1^2, lag=24)
pacf(sres_1^2, lag=24)

GARCH模型案例分析

par(mfrow=c(1,1))
qqnorm(sres_1)
qqline(sres_1)

模型预测

pred.model_1 <- predict(GARCH.model_1, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_2 <- predict(GARCH.model_2, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_3 <- predict(GARCH.model_3, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_4 <- predict(GARCH.model_4, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_5 <- predict(GARCH.model_5, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)
pred.model_6 <- predict(GARCH.model_6, n.ahead = 11, trace =FALSE, mse = 'cond', plot=FALSE)

predVol_1 <-pred.model_1$standardDeviation
predVol_2 <- pred.model_2$standardDeviation
predVol_3 <- pred.model_3$standardDeviation
predVol_4 <- pred.model_4$standardDeviation
predVol_5 <- pred.model_5$standardDeviation
predVol_6 <- pred.model_6$standardDeviation
et <- abs(rtm.outsample - mean(rtm.outsample))
rtd.HSI.2013 <- rtd.HSI['2013']
rv <- sqrt(aggregate(rtd.HSI.2013^2,by=substr(index(rtd.HSI.2013), 1, 7), sum))

predVol <-round(rbind(predVol_1,predVol_2,predVol_3,predVol_4,predVol_5,predVol_6,
                      as.numeric(et), as.numeric(rv)), digits=3)
colnames(predVol) <- 1:11
rownames(predVol) <-c('GARCH(1,1)-N模型','GARCH(1,2)-N模型','GARCH(1,1)-t模型','GARCH(1,1)-st模型','GARCH(1,1)-GED模型','GARCH(1,1)-SGED模型','残差绝对值', '已实现波动')
print(predVol)
                        1     2     3     4     5     6     7     8     9    10    11
GARCH(1,1)-N模型    5.037 5.286 5.513 5.722 5.915 6.094 6.260 6.415 6.560 6.696 6.824
GARCH(1,2)-N模型    4.760 4.747 5.136 5.404 5.661 5.891 6.102 6.296 6.473 6.638 6.789
GARCH(1,1)-t模型    5.347 5.532 5.703 5.864 6.014 6.154 6.286 6.410 6.527 6.638 6.742
GARCH(1,1)-st模型   5.386 5.560 5.722 5.873 6.014 6.146 6.270 6.386 6.495 6.598 6.695
GARCH(1,1)-GED模型  5.168 5.374 5.565 5.741 5.906 6.059 6.203 6.338 6.464 6.583 6.695
GARCH(1,1)-SGED模型 5.229 5.423 5.601 5.767 5.920 6.063 6.197 6.322 6.439 6.548 6.651
残差绝对值          4.147 3.513 3.659 1.464 2.007 7.838 4.584 1.177 4.584 1.026 2.388
已实现波动          3.543 4.114 3.929 4.778 4.374 6.013 5.397 4.634 4.070 3.745 4.395

模型选择

cor(t(predVol))

### GJR-GARCH模型概述 GJR-GARCH(Generalized Autoregressive Conditional Heteroskedasticity with Jump in the Range of Volatility)是一种扩展的GARCH模型,用于捕捉金融市场中不对称效应的现象。具体而言,该模型能够描述负面冲击对资产回报波动的影响大于正面冲击的情况[^1]。 传统GARCH模型假设正负冲击对波动率的影响是对称的,而实际市场数据表明,负面消息往往引发更大的波动性增加。为了弥补这一不足,GJR-GARCH引入了一个额外项来反映这种不对称性。其核心方程形式如下: ```math σ_t^2 = ω + αε_{t-1}^2 + βσ_{t-1}^2 + γI_{t-1}ε_{t-1}^2, ``` 其中 \( I_{t-1} \) 是指示函数,当 \( ε_{t-1} < 0 \) 时取值为1,否则为0;\( γ \) 表示负面冲击带来的超额影响程度。 ### 应用场景 #### 股票市场的风险评估 通过R语言实现GJR-GARCH模型可以用来估算股票收益率的时间序列特征,并进一步计算VaR(Value at Risk)。这种方法特别适用于处理非平稳性和异方差性的金融时间序列数据[^2]。例如,在SP500指数的研究案例中,利用Bootstrap方法和滚动窗口技术进行参数估计与未来风险预测成为常见实践之一。 #### 极端事件的风险管理 结合极值理论(EVT),特别是超过阈值(POT)的方法论框架下,GJR-GARCH被广泛应用于极端情况下的风险管理研究当中。它不仅帮助识别正常交易日内的常规变化规律,还能有效应对罕见但破坏力巨大的黑天鹅事件所带来的挑战[^3]。 #### 波动率预测性能比较 针对不同类型的损失函数设计相应的统计测试手段如Mincer-Zarnowitz回归、Diebold-Mariano (DM)检验以及Jarque-Bera(JB)检验等工具,则可用于评价基于GJR-GARCH和其他竞争模型所得到的结果优劣差异之处[^5]。这些分析有助于投资者理解各种建模选择背后可能存在的偏差及其经济意义。 ```python import numpy as np from arch import arch_model # 假设我们有一个名为returns的数据集表示每日收益率 model = arch_model(returns, mean='Zero', vol='GJRGarch', p=1, o=1, q=1, dist='Normal') res = model.fit() print(res.summary()) ``` 上述Python代码片段展示了如何使用`arch`库构建并拟合一个简单的GJR-GARCH(1,1)模型到给定的收益序列上[^4]。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值