牛顿插值法

差商

差商的定义:
函数 f ( x ) f(x) f(x)在两个互异点 x i , x j x_i,x_j xi,xj处的一阶差商定义为:
f [ x i , x j ] = f ( x i ) − f ( x j ) x i − x j ( i ≠ j , x i ≠ x j ) f[x_i,x_j]=\frac{f(x_i)-f(x_j)}{x_i-x_j} (i\ne j,x_i\ne x_j) f[xi,xj]=xixjf(xi)f(xj)(i=j,xi=xj)
2阶差商:
f [ x i , x j , x k ] = f [ x i , x j ] − f [ x j , x k ] x i − x k ( i ≠ k ) f[x_i,x_j,x_k]=\frac{f[x_i,x_j]-f[x_j,x_k]}{x_i-x_k}(i\ne k) f[xi,xj,xk]=xixkf[xi,xj]f[xj,xk](i=k)
k + 1 k+1 k+1阶差商:
f [ x 0 , . . . , x k + 1 ] = f [ x 0 , x 1 , . . . x k ] − f [ x 1 , . . . , x k , x k + 1 ] x 0 − x k + 1 = f [ x 0 , . . . , x k − 1 , x k ] − f [ x 0 , . . . , x k − 1 , x k + 1 ] x k − x k + 1 f[x_0,...,x_{k+1}]=\frac{f[x_0,x_1,...x_k]-f[x_1,...,x_k,x_{k+1}]}{x_0-x_{k+1}}\\ =\frac{f[x_0,...,x_{k-1},x_k]-f[x_0,...,x_{k-1},x_{k+1}]}{x_k-x_{k+1}} f[x0,...,xk+1]=x0xk+1f[x0,x1,...xk]f[x1,...,xk,xk+1]=xkxk+1f[x0,...,xk1,xk]f[x0,...,xk1,xk+1]
差商的性质:

这里写图片描述

这里写图片描述

牛顿插值多项式推导

这里写图片描述

这里写图片描述

这里写图片描述
根据上图,前n+1个式子乘以一个系数再相加,经过两边抵消得到 f ( x ) f(x) f(x),等式右边第一项 N n ( x ) N_n(x) Nn(x)为牛顿插值公式,第二项 R n ( x ) R_n(x) Rn(x)为插值余项。
这里写图片描述

等距节点的牛顿插值

f ( x ) f(x) f(x)在等距节点 x k = x 0 + k h x_k=x_0+kh xk=x0+kh处的函数值为 f k , k = 0 , 1 , . . . , n f_k,k=0,1,...,n fkk=0,1,...,n,称
△ f k = f k + 1 − f k , k = 0 , 1 , . . . , n − 1 \triangle f_k=f_{k+1}-f_k,k=0,1,...,n-1 fk=fk+1fk,k=0,1,...,n1
f ( x ) 在 x k f(x)在x_k f(x)xk处的一阶向前差分
∇ f k = f k − f k − 1 , k = 1 , 2 , . . . , n \nabla f_k=f_k-f_{k-1},k=1,2,...,n fk=fkfk1,k=1,2,...,n
f ( x ) 在 x k f(x)在x_k f(x)xk处的一阶向后差分。
在等距节点前提下,差商与差分的关系如下:
这里写图片描述

牛顿前向插值公式

如果节点 x 0 , x 1 , . . . , x n x_0,x_1,...,x_n x0,x1,...,xn是等距节点,即
x k = x 0 + k h , k = 0 , 1 , . . . , n , h = b − a n x_k=x_0+kh,k=0,1,...,n,h=\frac{b-a}{n} xk=x0+kh,k=0,1,...,n,h=nba
牛顿插值基本公式为
N n ( x ) = f 0 + Σ k = 1 n f [ x 0 , x 1 , ⋯   , x x ] ω k ( x ) ω k ( x ) = Π j = 0 k − 1 ( x − x j ) N_n(x)=f_0+\Sigma_{k=1}^nf[x_0,x_1,\cdots,x_x]\omega_k(x)\\ \omega_k(x)=\Pi_{j=0}^{k-1}(x-x_j) Nn(x)=f0+Σk=1nf[x0,x1,,xx]ωk(x)ωk(x)=Πj=0k1(xxj)
如果假设 x = x 0 + t h x=x_0+th x=x0+th,由差商与向前差分的关系 f [ x 0 , x 1 , . . . , x k ] = △ k f 0 k ! h k f[x_0,x_1,...,x_k]=\frac{\triangle^kf_0}{k!h^k} f[x0,x1,...,xk]=k!hkkf0
ω k ( x ) = Π j = 0 k − 1 ( x − x j ) = Π j = 0 k = 1 ( x 0 + t h − x 0 − j h ) = Π j = 0 k − 1 ( t − j ) h \omega_k(x)=\Pi_{j=0}^{k-1}(x-x_j)=\Pi_{j=0}^{k=1}(x_0+th-x_0-jh)=\Pi_{j=0}^{k-1}(t-j)h ωk(x)=Πj=0k1(xxj)=Πj=0k=1(x0+thx0jh)=Πj=0k1(tj)h
这里写图片描述

则Newton向前插值公式为:
N n ( x 0 + t h ) = f 0 + Σ k = 1 n [ △ k f 0 k ! Π j = 0 k − 1 ( t − j ) ] N_n(x_0+th)=f_0+\Sigma_{k=1}^n[\frac{\triangle^kf_0}{k!}\Pi_{j=0}^{k-1}(t-j)] Nn(x0+th)=f0+Σk=1n[k!kf0Πj=0k1(tj)]
插值余项为:
R n ( x 0 + t h ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! h n + 1 Π j = 0 n ( t − j ) R_n(x_0+th)=\frac{f^{(n+1)}(\xi)}{(n+1)!}h^{n+1}\Pi_{j=0}^{n}(t-j) Rn(x0+th)=(n+1)!f(n+1)(ξ)hn+1Πj=0n(tj)

#牛顿插值法优缺点
牛顿插值法的优点是计算较简单,尤其是增加节点时,计算只增加一项,这是拉格朗日插值无法比的。
缺点是仍没有改变拉格朗日的插值曲线在节点处有尖点,不光滑,插值多项式在节点处不可导等缺点。

  • 17
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值