1介绍
基于这篇文章的学习推荐系统(1)-业界推荐系统架构
2 推荐系统常见架构
2.1基于离线训练的推荐系统架构设计
主要应用场景:手机应用市场、音乐推荐、短视频推荐、资讯、购物
常用算法:逻辑回归(Logistics Regression)、梯度提升决策树(GBDT)和因式分解(FM)
2.2面向深度学习的推荐系统架构设计
主要应用场景:图像处理、自然语言理解、语音识别、在线广告等具有时序行为、多维数据的推荐系统
常用算法:受限玻尔兹曼(RBM)、自编码器(AE)、卷积神经网络(CNN)、深度神经网络(DNN)、宽度学习(Wide&Deep)等
2.3基于在线训练的推荐系统架构设计
主要应用场景:广告和电商等高纬度大数据量、实时性要求很高的推荐系统,例如,新闻事件
常用算法:FTRL-Proximal、AdPredictor、Adaptive Oline Learning 和PBODL等
2.4面向内容的推荐系统架构设计
主要应用场景:新闻资讯,今日头条、抖音、微博、视频音乐、广告购物朋友圈传播资讯、门户网站等
常用算法:NLP自然语言、word2vec、深度学习DNN、OCR等
参考
推荐系统(1)-业界推荐系统架构:https://zhuanlan.zhihu.com/p/93183929