推荐系统(1)-业界推荐系统架构(基于Python)

1介绍

基于这篇文章的学习推荐系统(1)-业界推荐系统架构
在这里插入图片描述

2 推荐系统常见架构

2.1基于离线训练的推荐系统架构设计

主要应用场景:手机应用市场、音乐推荐、短视频推荐、资讯、购物
常用算法:逻辑回归(Logistics Regression)、梯度提升决策树(GBDT)和因式分解(FM)

2.2面向深度学习的推荐系统架构设计

主要应用场景:图像处理、自然语言理解、语音识别、在线广告等具有时序行为、多维数据的推荐系统
常用算法:受限玻尔兹曼(RBM)、自编码器(AE)、卷积神经网络(CNN)、深度神经网络(DNN)、宽度学习(Wide&Deep)等

2.3基于在线训练的推荐系统架构设计

主要应用场景:广告和电商等高纬度大数据量、实时性要求很高的推荐系统,例如,新闻事件
常用算法:FTRL-Proximal、AdPredictor、Adaptive Oline Learning 和PBODL等

2.4面向内容的推荐系统架构设计

主要应用场景:新闻资讯,今日头条、抖音、微博、视频音乐、广告购物朋友圈传播资讯、门户网站等
常用算法:NLP自然语言、word2vec、深度学习DNN、OCR等

参考

推荐系统(1)-业界推荐系统架构:https://zhuanlan.zhihu.com/p/93183929

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weightOneMillion

感谢未来的亿万富翁捧个钱场~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值