文章目录:
相关笔记 :汇总
行测时间不够:基础水平,时间观念
1.基础水平
1.1 方式方法:答题技巧,速算技巧,别纠结舍难题,多动手勾画,定位或预判题型
多做套卷真题,常识直接涂答题卡
1.2 熟能生巧:多做
2.时间观念
2.1 做题顺序 用时建议:言语30、判断30、资料25、数量20、常识5、答题卡10
2.2 限时训练:别慢悠悠做(考试时间120分钟,涂答题卡10分钟)
一:常识
选项比较:话风,同质化比较
不会懵b c
选
1.不绝对化的:一般、可能、正常的情况等
2.一身正气:觉悟要高
3.达成目标,近期简单,远期难
4.与信息词相互关联的选项
5.日常积累:相信自己记忆,自己熟悉的,不要叛逆
6.选择年份接近现在的
不选
1.绝对化的选项:必须、禁止、所有、只有等
2.选项代数字
题型:政治、文化、经济、法律、生物医学、地理、数学、历史、生活、农学、科技、物理
二:言语理解
技巧 1.大多在首尾句找到作者观点,其余文段压缩阅读 2.可以利用技巧但有些会出错重在理解;语感不一定靠谱;最好尽量浏览完材料 3.高级词可能正确 4.注意特殊符号:引号、冒号、破折号 不选 1.选项是文中原话不选(完全一样) 2.绝对化语气不选 3.反常识不选 选 1.选积极向上的的 2.启事类:选深成的、激励的、触动的 3.标题类:短小精悍的选项 ------------------------------------------------------------------------------ 关系类型举例 ➀转折关系:“但是”“但相反地”“但另一方面”“实际上” “通过对比”“经与......对比”“相较之下” “然而”“然而整体而言”“其实不然” 转折词后为文段重点,转折前的表述通常为错误的选项,直接看转折词之后的内容 “很多人/大多数人/传统观点/以前/有些人/不少人认为+转折关联词” ➁因果关系:“因为”“因而”“因此” “造成”“导致”“由于” “之所以.....是因为....”".至工" ➂并列关系:“是.….不是.……”“不是而是" “既…...….又.…...…”“又.….….又....…”“既........也......" “有时.......有时.""—方面......另一方面”“此外” 不同话题:全面概括 相同话题:提取共性 多个方面:许多、一些、不同、各种等 片面:排除 ➃条件关系:“只要......就....…””只有......才.....”任凭......也....…." “无论...都..…”“除非.........…”““不管....总......" "A是B的必要条件、前提、基础、保障、途径”“必须”“务必”“除非” 条件是重点,即“才”“都”“必须”“务必”“除非”等前面的内容是重点 ➄递进关系:“并”“也”“还”“更” "不但......而且...…”“不仅”“甚至”“特别”“尤其” “重要的是”“关键是”“核心是” 不但......而且.......甚至..…”(多重递进时,最后一层递进为文段重点) 递进关联词后为文段强调重点 ➅对立关系:“如果不...那么”一旦...则..."倘若.可能......" 有观点类:观点+否则.....不然......(不重要) 无观点类:背景陈述+如果不...那么....客观问题+如果不.....(推导出解决问题的对策,对策是重点) ➆时空关系(时间空间):过去.…...现在......;传统....现代;美国.…....中国...... 前后对比,将要强调的不同点放到文段的后半部分,也就是文段的重点
1.片段阅读
总体方法
转折关系 格式 虽然/一方面 A,但是/可是/然而/却/不过/其实/事实上/实际上/另一方面/更为重要的是 B 别人观点+转折:人们/大众/其他人 认为 特点:转折之后是重点、“别人观点+转折”前后结合看 因果关系 格式 因为 A,所以/由此看见/看来/导致/造成/使得/致使 B 宏观指代词:这就意味着/这样 特点:重点关注结论、注意选项设置(匹配结论话题即可) 必要条件 格式:只有 A,才/才能 B = A是B的必要条件 = 不A则不B 只有有时会省略 A是B的前提、基础、保障、途径、方式、方法 特点:A条件是重点 对策引导 格式 正向引导词:必须、需要、应该、应当、务必 反面论证给对策:如果/倘若/一旦......+不良结果 行文结构给对策:提出问题-分析问题-解决问题、提出问题-解决问题、问题-精准原因-严重后果 特点:有结果找原因、没结果找对策(意在强调 文章概括 重在说明) 并列关系 格式 显性:同时/此外/另外/并且、一方面...另一方面 隐性:标点符号(;)、并列层级、相同句式 特点:不分主次、不可偏颇、全面概括;排除法做题 主体话题法 格式:注意首句、注意主体对象(人 事物 概念) 特点:抓主体/话题去匹配选项 文段中的总与分 格式:谁为谁论证;谁为谁铺垫 总:观点、结论、对策;别人论证它;别人引出它 分:铺垫、论证、解释;引出中心;论证中心;解释中心 特点:宏观(主体话题法 文段中的总与分)> 微观
1.1 标题填入/主旨观点
提问方式:意在、主旨、主要、概括、强调、重在、想 解题方法 以句子为单位读题边读边划 带着中心句或话题匹配选项对比则优(细节对比 差中选优 优中选优) 标题具有概括性体现文段重点 干扰选项特征:非文段重点、非文段核心话题、无中生有偷换概念
1.2 细节题/文意判断
细节理解:得出/推出 选项短:先浏览选项,后阅读文段。排除+确定 选项长:扫一眼选项 选项有明确的定位功能——摇摆式定位、排除+确定 选项无明确的定位功能--读完文段再作答(划分话题群) 细节查找 查找要素原因类:定位查找原因词/结论词 查找目的意义类:定位对象就近查找其证明的内容
2.逻辑填空
1.选语境相呼吁的词,多注重逻辑关系
2.近义词:选择范围大的
3.语意轻重:最重、最轻
4.成语辨析:选择晦涩难懂的
找照应 解释说明 逗号 冒号 破折号:对所填的词的解释 例如 代词 逻辑关系:因果、递进(并 并且)、相反、并列 结构照应:三部分并列修饰同一对象(3相同 111递进 2同1异);总分总 限定性照应:背景前提推结论 ------------------------------------------------------------------------------ 辨选项:多个空可以选确定某选项从而确定答案 相近的词语拆分更方便理解 表达倾向 固定搭配对应 词性搭配:v+n/adv n+v/adj 需要留心是否出现“和”“及”“与”“同”等并列标志词 注意积累常见搭配 程度轻重对应:轻易程度要匹配 好坏 解释说明对应 标志词:是、就是、即、无异于、无疑是、可以说、比如、例如、冒号(:)、破折号(——)等 重点词句对应 主题词:即文段围绕论述的核心名词 拟人、类比等形象表述:的“像..…....那样..…”“正如”“和...一样”“...有异曲同工之妙”等 中心句或文段中的完整语句 前后呼应对应:相同、相反等
3.语句表达
3.1 语句排序
排除法做题:首句+捆绑,缩小答案范围;首尾句兜底 不适合做首句:指代词(无明确指代对象)、结论词、补充类表述 适合做首句:下定义、总结句 捆绑:指代捆绑、逻辑关联捆绑(因果 转折 递进)、句群捆绑(话题信息相同)、行文结构(提出分析解决问题 总分总) 优先尝试:注意验证,尝试失败,及时止损 利用选项提示 代词、名词、时间
3.2 语句衔接
特征:所填入的信息是对上下文原有信息的重复 技巧 横线在首尾:总结全文,兼顾衔接语句 横线在中间:承上启下(注意引用上下文话题)
3.3 下文判断
有新话题按照新话题预测(注意感情倾向) 没有新话题排除法来做
三:判断推理
1.图形推理
1.1 技巧
笔画数 怎么判断一笔画:奇点数量为0或2 什么是奇点:以一个点为中心,发射出奇数条线 注意!端点都是奇点、奇点数一定是偶数 如何确定笔画数:笔画数 = 奇点数/2 六面体拼合:马走日方法 原理:走两步会回到原来的位置 技巧:找点/三个面(左右左下右下关系) 注意 中心对称/镜像:不存在的面直接排除 遇见有争议的两个选项:直接展开和原图比较,正确的顺时针排序,错误镜像是逆时针排序
1.2 规律
图形 数量关系:度数(角度 旋转角度)、相同形状面数量、封闭区间个数 线条数(横线 竖线 平行线)、交点数(图形内外交点 交点与曲直线关系) 切点数、相交边数、边上点数、平行线数、穿过方格的数量 笔画数和封闭空间数量一致、部分数(最近3者之间关系) 位置关系:平移(顺逆交互 内绕图形各点移动)、旋转(剪切部分旋转)、翻转、截面、展开图 空间关系:对称(对称轴旋转 中心对称 轴对称 对称轴路径 对称轴和阴影平行还是垂直 角度旋转) 凹凸性、曲直性、封闭性、去同存异、六面体拼合 公共边、相交、相离、相切(相切于面)、垂直、开末线条关系 黑白运算:图形运算、元素运算 汉字 数量关系:笔画数(相同 递增 递减 奇数 偶数 运算) 拼音、封闭区间个数、横竖撇捺数量(间隔) 空间关系:部分数(相同 递增 递减) 汉字结构(全包、半包、上下、左右、偏旁、相同元素) 对称、笔尾逆时针、去同存异、首笔画 字母 数量关系:字母个数、交点数、笔画数、直线数量、点数、字母类型数量 空间关系:对称、开口、共性、全包半包、间隔字母、部分 完全、求异求同、曲直、字母移动 数字 数量关系:封闭空间个数 空间关系:对称、平移、旋转 黑白块 数量关系:黑白数量(横竖)、种类个数、对称轴两侧数量、两图对比黑白点相同数量 几何关系:周长、面积 空间关系:移动(对角 顺逆上下左右 整体移动反复 内外圈) 对称(中心对称轴对称交互) 部分 完全、行列依次变化、连接方式(点点 面面) 黑白运算:同白异黑、同黑异白、旋转再运算
2.定义判断
核心:看清问题,抓住信息,选项比较
主客体 主体:指一个动作或事件的发起者或执行者; 客体:指一个动作或行为指向的对象; 当主体或客体有明确的范围界定时,可优先进行选项对应、对于明显不符合的选项进行排除 条件句式 表示方式的引导词:通过、利用等 表示原因的引导词:因为、由于等 表示时间条件的引导词:当…....时、在.…....时等 表示结果的引导词:所以/因而/从而/带来/引发/导致/使得等表结论的词汇
3.类比推理
要多积累:成语、诗句、典故、生活常识
语义关系:近义词、反义词、比喻、象征 语义关系中常搭配考查的二级辨析主要有感情色彩、词语结构、词性 逻辑关系 全同关系:同一个意思 并列关系:矛盾关系(没有第三种关系)、反对关系(还有其他情况存在) 交叉关系:两边有中间共同的属性 包容关系:种属关系、组成关系 对应关系:一定范围事件包含的各词语要素之间构成的相互对应,包括物品、职业、地,点、原因、结果、方式、行为、工具、功能等多种对应 配套使用、物品与原材料 制作工艺、物品与功能、属性关系、因果关系 前后关系:马斯洛需求层次理论图(生理-安全-归属-尊重-自我实现) 语法关系 造句子(主谓宾) 古今说法不同用法一致 逆向思维 常识 南辕北辙 事理顺序:事物发展规律 特殊题型 曲直类比推理:完全对立,且只有这两种 呼吸:反对关系(还有屏住呼吸的状态) 动静:矛盾关系 进退:反对关系(还有原地不动的状态) 黑白:反对关系(哈有其他不同的颜色) 比喻:纸老虎、铁公鸡
4.逻辑判断
4.1 削弱加强
加强论证(赞同):加强论证(搭桥 补范围)、补充论据(必要条件 解释论点 举例子) 提问方式中带有:“加强”“支持”“假设”“前提”等关键词 解题思路:表述直接的力度强、与话题接近的力度强 读(论点意思)、 析(核心话题)、 比(比主体、比范围、比话题、比强弱)、 加强方式 (1) 搭桥 论点和论据中出现了两个没有明显相关性的概念,优先考虑搭桥,指出两者相关 论点和论据中分别出现了一个整体和一个部分的概念,优先考虑搭桥,指出部分可以代表整体 当提问方式是前提、假设、必要条件、加强论证时(考查搭桥加强的可能性非常大) (2) 补充论据:“解析”论点成立的原因、“举例”证明论点成立 削弱论证(反对):削弱论点(直接 举例否定)、削弱论证(拆桥 补范围 因果列置)、削弱论据、他因削弱 提问方式中带有:“削弱”“质疑”“反驳”“否定”等关键词 解题思路 读(论点意思)、 析(核心话题)、 比(比主体、比范围、比话题、比强弱)、 削弱方式 (1) 拆桥:破坏论点和论据之间的关系(拆桥的力度要强于单纯的否定论据) 论点和论据中出现了两个有明显关系的概念,此时优先考虑拆桥,指出两者不相关 论点和论据中分别出现了一个整体和一个部分的概念,此时优先考虑拆桥,指出部分不能代表整体 论据是调查或实验数据,且没有直接否定论点的选项,可能会考查拆桥(常见的选项表达方式为调查数据不具有代表性) (2) 否定论点
解题方法
方法!!! 1.倒序法:问题——>论点(选项与论点据有关)——>选项——>看前文代入排除 2.主语法 1)一个主语 2)两个主语(因为a所以b):找b 3)三个主语(因为a所以b所以c):有bc找ab、有ac找bc(缺啥找啥 和b一定相关)、若一个没有缺失必对 3.常识法:日常常识问题 4.题型法 评价型:一般选项兼顾双方 结论型:一般语气较弱的选项 5.加强削弱法 对策效果型 A方法有效果 加强:没有A方法效果更差 削弱:没有A方法效果更好 A方法无效果 加强:没有A方法效果更好 削弱:没有A方法效果更差 正方:A导致B 反方:C导致B 削弱正方:C导致A 削弱反方:A导致C 因果倒置 论点:A是B的原因 削弱:B是A的原因 论据为部分,论点为整体 加强:部分可以代表整体/其他部分也一样 削弱:部分不可以代表整体/其他部分也不一样 对比试验型 论据:A喝水,B不喝水,喝水体重下降 论点:有利于减肥 加强(排除他因):除了喝水都一样 削弱(另有他因):喝水还需要注意饮食 论据:长时间照明会扰乱幼鼠生物钟 论点:长时间照明对扰乱小孩睡眠和苏醒规律 加强(类比相似):基本相同 削弱(拆桥):差异很大 6.A——>B法 如果A那么B 只有B才A B是A必不可少的条件 否定:A且-B -A且B 7.去同存异法:前后位置不变
4.2 谁真谁假
一真一假型(每个人都对一半错一半):非黑即白,如果不对再假设第一个人的前半段话为真 技巧:第一个人的后半段话为真[因为如果优先第一个为真会很快得出答案 出题人不允许这么快] 三句话型(一人全对,一人全错,一人对一半错一半):如果它为假,那么就都为假了 技巧:选最大信息量,即三个人都提到的对象为真 欺负老实人型(只有一个人说的对,一般是四个人说话。最后有一个评理):直接三假一真 技巧:评理人提到的那个对象,其他凡是提到这个对象的人,以及被提到是(不是)该对象的人的话都为假 没(被)提到的该对象那个人的话为真 人多欺负人少型 (两个人真话,两人假话) 技巧:先找到矛盾的两人放一边 另外两人中谁提到的人最多谁说的-为真 另一人说的为假 欺软怕硬型 技巧:硬气程度→“所有 必须>有的 可能 也许>具体的人和事” 则逆着最软的人说即为选项 不同中找相同型 技巧:划掉相同的,对比不同的 选重复人 4321找弱鸡型 技巧:找弱鸡因队友为真、列表
4.3 一拖五
选拔类(几进几):数数+反推,确定捆绑区间(由七进四推出三进二) 排序类:推荐代入,最多隔几排选项优先从后往前代入 注意:A和B隔3排,就是占了5排 组合类 题干信息:列出数量关系(确定区间)、找到特别的(比如有一个 不和其它任何一个在一组) 选项:找出与其他互斥的信息
四:数量关系
1.数学部分不会的:选B多
很难的选A B,B偏多
简单计算可以得到答案的选C多
2.ABCD均匀分布:没做过的选避开选择过的选项
3.蒙整不蒙零、蒙奇不蒙偶
4.选项有升降:最大最小不必看,答案多为中间项
5.选项多整百整千多为正确选项
6.比例选项可以整除多为正解
7.复杂问题:尾数不同采用尾数法
8.极值问题:最小多为第二小、最大多为第二大
1.解题思路方法
1.1 代入排除法
使用范围 1.看题型:多位数、年龄、余数、不定方程 2看选项 3.选项信息充分;选项为一组数。(问法:分别/各) 4.剩两项:只代其中一个 使用方法 1.先排除:奇偶、倍数、尾数 2.再代入: (1)从简原则:方便计算的数,整十、整百的数 (2)最值原则:问最大,从最大开始代入;问最小,从最小开始代入 对于生活中的问题,注意用生活思维
1.2 倍数特性法
整除型(平均分配物品、平均数) 如果 A=B×C (B、C均为整数),那么A能裤B整除,且A能被C整除 三量关系(A=B×C)∶行程问题、工程问题、经济利润问题 余数型 若总数=ax+b (a,x均为整数) 则(总数-b)一定能被a整除 比例型 若a/b=m/n (m、n互质),则a是m的倍数,b是n的倍数; 若a=m/n * b (m、n互质),则a是m的倍数,b是n的倍数; 若a=m/n * b (m、n互质),则a=m/(m+n) * (a+b); 比例型适用于: 题干特征:分数、百分数、比例、倍数 对象特征:描述对象为不可分割的整体,整数才有意义(如人、车、年龄等)
1.3 余数特性法(余同加余-和同加和-差同减差)
同余问题核心口诀:“最小公倍数作周期,余同加余,和同加同,差同减差” 1.余同加余:“一个数除以4余1,除以5余1,除以6余1”,这个数是60n+1; 2.和同加和:“一个数除以4余3,除以5余2,除以6余1”,这个数是60n+7; 3.差同减差:“一个数除以4余3,除以5余4,除以6余5”,这个数是60n-1; 在这里,60为(4、5、6的最小公倍数),n的取值范围为整数,可以为正数也可以是取负数 在题干中看到“某物按×个分组还余y个”的条件,这种分组、分类有余的题目就是典型的余数特性题目
同余定理:余数的和差积,决定和差积的余数 a b a+b a-b axb —— 余3 __余2 则 ————余5 —————余1 ————与6 7 7 7 7 7 如果余数等于分母:余数就是0 如果余数超过分母:余数 = 余数 = 分母
1.4 奇偶特性法
在乘法中 若因子中存在偶数,则结果为偶数;无偶数则结果为奇数(有偶就偶) ①奇数×奇数=奇数 ②偶数×偶数=偶数 ③奇数×偶数=偶数 若 几个整数的和(或差)为奇(或偶)数 则这几个整数的差(或和)为奇(或偶)数 在加减法中 两个因子奇偶性相同,则结果为偶数。两个因子奇偶性不同,则结果为奇数(同偶异为奇) ①奇数±奇数=偶数 ②偶数±偶数=偶数 ③奇数±偶数=奇数
1.5 赋值法
题型 工程问题、混合配比问题、加权平均问题、流水行船问题、往返行程问题、几何问题、经济利润问题都常用到“赋值思想” 规律 当题目所给信息中“未涉及”到某个具体数量的大小 通常出现“倍数”“分数”“百分数”“比例” 并且该数量的大小“不影响”最终所求结果,可赋值 技巧 观察题目所给的数值(分数、百分比、比例),赋值数多为这些数的公倍数 工程量、工作量等可将每天推进量赋值为1 准确列出方程
1.6 极限法
极值思想:是分析题目条件后,构造出满足题意的“最极端情况”,是极值在构造法中的运用形式 规律:出现“至多”、“至少”、“最多”、“最少”、“最大”、“最小”等字眼时,我们要有“极值思想” 技巧:题目提问中有“至少...…才能保证...…”那么“保证”后面的情况是必然发生的情况(即:最不利情况数+1) 两 要:要分析题目条件后,构造出满足题意的最极端情况,要应用极端情况进行解题 一不要:不要忽视可能存在的情况 在解题时一定要全面思考,不能忽略可能存在的情况,做到多想一点、想全一点 一原则:和定最值的原则,总和数不变 求最大量的最大值时,其他值尽可能地小 求最小量的最小值时,其他值尽可能地大
1.7 逆向推理法
要注意培养逆向思维解题题感,跳出思维陷阱 逆向推导∶将过程颠倒,形成与之相反的运算过程从后往前获得所求值 解题关键在于将过程反向推导,形成解题思路与方法 正反互补∶当所求情况过多、计算复杂时,可以考虑用整体减去与之相反的情况来求解,简化计算过程
1.8 整除法
规律 当题目中:出现了“每、平均、倍数、整除、约数”等字眼的时候 当题干中:出现了“倍数”、“分数”、“百分数”、“比例”这些数据时 特殊数字整除判定 2 (5) 整除:观察数字的“末位”数字能否被2(5)整除 4(25) 整除:观察数字的“末两位”数能否被4 (25)整除 8 (125)整除:观察数字的“末三位”数能否被8 (125)整除 3 (9) 整除:观察“各位数字之和”能否被3(9)整除 普通数字整除判定 一般采用分解因式的方法进行快速判断 例如:判断一个数字能否被6整除,6=2×3,则只需要判定该数能否被2和3整除; 判定531能否被47整除,可以将531分解为(470+61)进行判断;
1.9 十字交叉法
基本原理:部分比值与混合比值交叉做差之比 = 等于部分比值的分母比 (分母比:看分母是否是题目的问题)
十字交叉法最先是从溶液混合问题衍生而来的 若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r 则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=(r-b)/(a-r) 在解题过程中一般将此式转换成如下:大数-小数 A a r-b \ / \ / A r-b r ◕‿◕ ―― = ―― / \ B a-r / \ B b a-r 混合增长率 R=A+B时 得出 A/B = (r-b)/(a-r) B A |_______________|______| a r b ①用来解决两者之间的比例关系问题 ②得出的比例关系是基数的比例关系 ③总均值放中央,对角线上,大数减小数,结果放对角线上 除了典型的溶液混合问题,还能应用在两部分混合增长率问题、平均分数、平均年龄等问题 比值可以是“平均数”“比重”“浓度”“利润率”“折扣”等
1.10 方程法
基本方程 掌握基本的"设元方法",准确找出题目中的等量关系进行列式,是数学运算中最重要的方法 不定方程 经常会遇到含有1个未知数的方程,也可能遇到含有2个未知数2个方程的方程组,或者3个未知数3个方程的方程组,这些方程或者方程组一般都有确定的解 解不定方程问题常用的解法:综合利用整数的奇偶性、自然数的质合性、数的整除特性、尾数法、余数特性、特殊值法、代入排除法等多种数学知识来得到答案 不等式 在设元求解的过程中,根据题意所得方程可能是等式方程,也可能是"不等式"方程 即所求的值是一个数量区间,而非一个定值 相较于等式方程能求出精确值,不等式方程还需要我们对取值"区间做出判断"
2.核心题型解题方法
2.1 工程问题
基础知识 1.工作 量 = 工作效率×工作时间 W=pt 2.工作效率 = 工作 量÷工作时间 两两合作:求出”最小公倍数“,列式组合求解 解题思路 1.条件只给出时间的具体值:通过给总量赋值,一般将总量设为时间的公倍数,从而计算出给出条件的效率 2.条件中不仅有时间,而且有关于效率的比例关系,通常给效率赋值,通过公式计算出工作总量 3.题目中有效率、时间、总量三个中的任意两个的具体值,则代入公式计算出第三个即可 合作完工、交替完工、青蛙跳井
2.2 行程问题
基础知识 平均速度=2V1*V2 / (V1+V2) 基本公式:路程=速度×时间 相遇 背离问题:路程和 = 速度和(大速度+小速度) × 时间 多次相遇问题:时间一样 两岸出发 同岸出发 追及 问题:路程差 = 速度差(大速度- 小速度) × 时间 流水行船问题 顺水行船:路程=(船速+水速)×时间 逆水行船:路程=(船速-水速)×时间 V顺 = V船 + V水 V逆 = V船 - V水 V顺 + V逆 = 2V船 V顺 - V逆 = 2V水 火车过桥(隧道)︰火车速度 × 时间 = 车长 + 桥长(隧道长度) 解题思路 根据题干先判断出题型,尽量能画出简易图,根据各个量之间的关系代入上述对应的公式即可 补充知识 ①时间一定,路程和速度成正比 ②路程一定,速度和时间成反比 ③速度一定,路程和时间成正比 ④当行程中某一个量为定值,且出现比例时,可以考虑用比例求解
2.3 经济利润问题
基础知识 1.利润=售价-进价 2.利润率=利润÷进价 利润=进价*利润率 =(售价-进价)÷进价 =售价/成本 -1 3.售价=进价×(1+利润率) 变形 4.打折率=新售价/原售价 折扣率=1-打折率 解题思路 若题干中未出现具体单位,可以利用赋值法求解 在解题中,可以利用数字特性快速求解
2.4 几何问题
平面图形 | ||
图形 | 周长公式 | 面积公式 |
长方形 | (长+宽)*2 | 长*宽 |
正方形 | 边长*4 | 边长*边长 |
三角形 | 底*高 / 2 | |
平行四边形 | 底*高 | |
梯形 | (上底+下底)*高 / 2 | |
圆形 | π * 直径 = 2π*半径 | πr^2 |
扇形 | 扇形半径×2+弧长 | (lR)/2 (l为扇形弧长) =(1/2)θR²(θ为以弧度表示的圆心角) =扇形度数/360 * π r^2 |
棱形 | 1/2 * 对角线 * 对角线 |
立体几何 | ||
图形 | 表面积公式 | 体积公式 |
长方体 | (长*宽 + 长*高 + 宽*高)*2 | 长*宽*高 |
正方体 | 棱长*棱长*6 | 棱长*棱长*棱长 |
圆柱体 | 上底面积+下底面积+侧面积 | 底面积*高 |
圆锥体 | πr²+πrl | 底面积*高/3 |
圆台体 | πr²+πR²+πrl+πRl=π(r²+R²+rl+Rl) r-上底半径 R-下底半径 | 1/3 * π * h (R^2+R*r+r^2) |
球 | 4π * r^2 | (4π * r^3)/3 |
角度 | |||
30° | 45° | 60° | |
sin | |||
cos | |||
tan | 1 |
三角形常用知识点 | |
两边之和大于第三边,两边之差小于第三边 | |
三角形内角和为180° | |
勾股定理: a^2+b^2=c^2 常用勾股数(3、4、5; 6、8、10; 5、12、13) |
解题思路 1.规则图形,按照相对应的公式列方程或直接计算 2.不规则图形,通过割、补、平移等方法转化成规则图形,再按照相对应的公式列方程或直接计算
2.5 排列组合及概率问题
完成一件事有多少种不同方法数的问题
排列(A):与顺序有关 m 定义:从n个元素种选出m个,排成一排A ,从n开始往下数m个数 n 3 5 举例:A =5x4x3 A = 5x4x3x2x1全排列 5 5 组合(C):与顺序无关 m ,从n开始往下数m个数 定义:从n个元素种选出m个,排成一排C n ,从m开始往下数m个数 3 5x4x3 2 5x4 0 n 1 n-1 举例:C = ——————=10 C = ——————=10 C = C =1 C = C =n 5 1x2x3 5 1x2 n n n n —————————————————————————————————————————————————————————————————————————————— 分类与分步:先分类再分步 分类[加法]:国考、省考、选调、事业单位 分步[乘法]:省考(报名-笔试-面试-政审) —————————————————————————————————————————————————————————————————————————————— 相邻与不相邻 相邻:捆绑法 先捆:先把必须相邻的元素捆绑起来,注意内部有顺序 再排:将捆绑的元素看成一个元素,与其他元素进行后续排序 不相邻:插空法 先排:先将可以相邻的元素进行排序,排列后形成若干个空 先插:将不相邻的元素插入形成的空位置种 —————————————————————————————————————————————————————————————————————————————— 隔板法:把n个相同的元素分给m个不同对象时,要求每个对象至少分a个,用隔板法 方法:每个对象至少分1个或几个时,先给每个对象分一个(即先分a-1个) 剩下的元素必须给每个主体至少再分一个才能满足要求 m-1 此时可以用非空公式:方法数 = C n-1 —————————————————————————————————————————————————————————————————————————————— 分堆法:A B C D分成2堆,每堆2个,有几种方法 2 2 C C = 6 错误 4 2 因为(重复了):AB CD、AC BD、AD BC、BC AD、BD AC、CD AB 2 2 C C 4 2 ———————— = 3 正确 2 A 2 —————————————————————————————————————————————————————————————————————————————— 全错位排序 D1=0、D2=1、D3=2、D4=9 Dn=[Dn-1 + Dn-2](n-1) —————————————————————————————————————————————————————————————————————————————— 圆圈排列 n-1 n个人围成一圈 A n-1 —————————————————————————————————————————————————————————————————————————————— 优限法:优先考虑有限制条件的方法 —————————————————————————————————————————————————————————————————————————————— 对立法:正面思考太复杂(分的类比较多),对立面分类情况比较简单 总的 - 对立的
2.6 溶液问题
基本公式 溶质的质量 浓度= ————————————×100% 溶液的质量 溶质的质量 溶液的质量= ———————————— 浓度 溶质的质量 = 溶液的质量*浓度 溶液混合问题——十字交叉法 1.溶液混合问题,指两种不同浓度、不同质量的溶液混合在一起,形成新的浓度 这是溶液问题中基本题型,常用解法为“十字交叉法” 步骤为: ①写两个部分量的浓度; ②写整体浓度; ③十字交叉作差(大数–小数); ④写差值最简比; ⑤最简比对应两部分溶液的质量之比; 2.十字相乘法使用时要注意几点: ①用来解决两者之间的比例关系问题 ②得出的比例关系是基数的比例关系 ③总均值放中央,对角线,大数减小数,结果放对角线上 实际量 部分比值 总体比值 交叉做差(最简比) A a r-b \ / \ / A r-b r ◕‿◕ ―― = ―― / \ B a-r / \ B b a-r 注:a>r>b 1.三组计算关系: 第二列和第三列交叉作差得到第四列(大数减小数) 第一列和第四列的比值相等 第二列的差等于第四列的和 ⒉.最简比(实际量之比)为比值的分母之比
2.7 和定最值问题
基础知识 如何来判断一个题目是否属于和定最值问题,我们需要按以下两个条件去排除: 1.几个数的和一定 2.问题是求其中某个量的最大值或者最小值 题型特点 题干或问法中出现“最大或最小、最多或最少、至多或至少。”等,我们首先要考虑是和定值问题 和定最值:多个数的和一定,求其中某个量的最大或最小值的问题 解题原则 1.求某个量的最大值,让其余量尽可能小,从最小开始分析 2.求某个量的最小值,让其余量尽可能大,从最大开始分析
2.8 容斥问题
基本原理:把所有重叠区域变成一层
二者容斥
三者容斥
![]()
标准型:把所有重叠区域变成一层 加和 去重 补缺 A∪B∪C - 都不满足 = A+B+C - (A∩B + A∩C + B∩C) + A∩B∩C 上面减去了三层,就没有了0层,所以要加1层 ------------------------------------------------------------------------------ 非标准型:把所有重叠区域变成一层 A∪B∪C - 都不满足 = A+B+C - 满足两项 - 满足三项x2 ------------------------------------------------------------------------------ 列方程组 总数 - 都不满足 = 一个条件满足 + 两个条件满足 + 三个条件满足 ------------------------------------------------------------------------------ 其他方法:A B C是三个全圆形——所以加多了 I=I0+I1+I2+I3 一层:I1 二层:I2 三层:I3 A+B+C = I1+2I2+3I3
容斥极值
2.9 等比等差问题
等差数列 1.基础知识 等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数 例如:1,3,5,7,9..... 数列的第一项叫做首项a1表示,数列的最后一项叫做末项用an表示 相邻两项的差值叫做共差d表示 前n项和用Sn表示 2.基本公式 通项公式:an = a1+(n+1)d = am + (n-m)d 求和公式: (a1+an )*n n(n-1)d Sn = —————————— = =na1 + —————————— = a中*n 2 2 Sn =中间项*n (n为奇数) 中=(n+1)/2 =中间两项和/2 *n (n为偶数) 等比数列 通项公式:an = a1*q^(n-1) = am*q^(n-m) 求和公式:Sn = a1*(1-q^n) / (1-q) q≠1 Sn = (a1-an*q )/(1-q) q=1 --------------------------------------------------------------------------- 周期循环 解题关键:寻找最小循环周期 (1)找周期:找准周期的起点和终点,确定总数 (2) 算余数:总数÷每个周期的个数=周期数量......余数(n) (3)做等价:余数n就等价于该周期的第n项(余几数几) 整除 1.核心 通过题干中所给的信息,判断结果应具备的整除特性,从而排除错误选项 2.应用环境 题干文字描述中出现“整除、每、平均、倍数"等字眼时 能用利用整除解题题干中出现分数、百分数、比例等数据时能够利用整除解题
2.10 统筹问题
排队取水 例: 有7个人打水,1个水笼头,公别时 11 9 7 5 4 3 1 分钟,则怎样打水用时最短? ll*1十 9*2 十 7*3十 5*4十4x5十 3x6 十l×7 若2个水龙头 11*1 + 9*1 + 7*2 + 5*2 + 4*3 + 3*3 + 1*4 货物集中:判断该点两端货物的重量,将轻的一端搬到重的一端
2.11 方阵问题
1.方阵总人数∶N^2 (设方阵每行每列人数为N) 2.相邻两圈方阵人数差为8人 3.若方阵去掉a行b列,减少的人教:aN + bN - ab (从0开始数) 4.方阵最外层阶总人数:4(N-1)
2.12 钟表问题
钟表12格、分针60小格 时针每小时转30。、分针每小时转12个360。 时针一夜昼夜转两圈720。,一小时转1/12圈30。;分针一昼夜转24圈,一小时转一圈 时针的转速是分针的1/12,分针每小时可以追及11/12 时针与分针一昼夜:重合22次、垂直44次、180。22次 追及公式:T = T0 + 1/11 *T0 T为追及时间、T0为静态时间
2.13 牛吃草问题
类似于行程问题中的追及问题
原有草量 = 牛吃的的草量 - 新长的草量 = 牛吃草的速度*时间 - 草生长的速度*时间 = (牛吃草的速度 - 草生长的速度)* 时间 = (V牛 - V草)* 时间
2.14 年龄问题
关键是年龄差不变 几年后年龄 = 大小年龄差/倍数差 - 小年龄 几年前年龄 = 小年龄 - 大小年龄差/倍数差
2.15 植树问题
直线植树: 距离/间隔 +1 = 棵数 四周植树: 距离/间隔 = 棵数 楼间植树 单边植树: 距离/间隔 -1=棵数 双边植树:(距离/间隔 -1)*2=棵数
2.16 剪绳问题
对折N次,从第M刀剪,被剪成:(2^N * M + 1)段
2.17 星期日问题
平年:不能被4整除、365天、2月28天 闰年:366天、2月29天 普通闰年:如果一个年份能被4整除且不能被100整除,那么这个年份就是闰年 例如,2020年是闰年,因为2020能被4整除且不能被100整除 世纪闰年:如果一个年份是整百年(如1900年、2000年),那么它必须是400的倍数才是闰年 例如,2000年是闰年,因为2000能被400整除;而1900年不是闰年,因为1900不能被400整除 大月 31天:1、3、5、7、8、10、12 小月 30天:2、4、6、9、11 注意:星期每7天一循环;“隔N天”指的是“每(N+1)天”
2.18 页码问题
X千里找几,公式是1000+X00*3 X百里找几,就是100+X0*2:请注意,要找的数一定要小于X,如果大于X就不要加1000或者100一类的了 7000页中有多少3就是1000+700*3=3100(个) 20000页中有多少6就是2000*4=8000(个) 3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了
2.19 和定最值问题
若干个数求和,和为定值,求其中某个数的最大值或最小值:写出对应的位置进行分析 最大值:其他最小 最大数的最小值:先求平均量 最小数的最大值:其他最小
2.20 最不利问题
至少...能够保证... 解题方法:最不利方法数+1
2.21 鸡兔同笼问题
算法思维:就是假设全鸡或者全兔
全鸡
总脚数 - 全鸡头数*2 = 剩余的脚数
剩余脚数/差值(4-2)= 兔数
全兔
全兔头数*4 - 总脚 = 剩余的脚数
剩余脚数/差值(4-2)= 鸡数
该问题大约在1500年前的《孙子算经》中就有记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?” 解释:鸡兔一个笼子35个头,一共有94只脚,问鸡和兔有多少? 传统方法 1.全鸡:35只 兔:0只 2.全兔:35只 鸡:0只 3. 鸡x 兔35-x (兔x 鸡35-x) x*2+(35-x)*4=94 x=23 35-23=12 《孙子算经》方法:脚多的 脚数/2-头数=兔数 头数-兔数=鸡数 94/2-35=12 35-12=23 ------------------------------------------------------------------------------------ 有鸡兔共20只,脚44只,鸡兔各几只? 44/2-20=2 20-2=18 脚数/2 - 头数(就是鸡) = 兔数 因为鸡的脚是2,除2就是头数 兔不行,因为不可能是两个脚
2.22 空瓶换水问题
拆分瓶和水:空瓶 和 水 3空瓶 = 1瓶水 ——> = 1空瓶 + 1份水 2空瓶 = 1份水
2.23 概率问题
1.给情况求概率 满足要求的情况数 概率P = ———————————————— (不要硬算,上下约分巧算) 总的情况数 —————————————————————————————————————————————————————————————————————————————— 2.给概率求概率情况 分类:P=P1+P2...+Pn (例:不下雨的概率=晴天概率 + 阴天的概率) 分步:P=P1xP2x...xPn 例:连续两次命中的概率=第一次命中的概率 x 第二次命中的概率) —————————————————————————————————————————————————————————————————————————————— 3.多次重复实验 k k n-k 伯努利公式 P=C P (1-P) n 3 3 2 例:打靶中的概率为60%,求5中3的概率P=C 0.6 (1-0.6) 5
五:资料分析
1.资料分析可以用尺子找出:条形图大小、最值、排第几、高度比例、角度比重
2.最后判断题目时间可能不够:可以看简单选项对错进行排除
3.先看问题,勾出关键字:不然容易找错
4.题干有约字:选项一定不是整数
5.选项全由“文字”组成:多半选C
6.主要由“数字”构成的选项:多半选B
7.最后一道综合分析题:多半C D,优先看D
8.选项是几个国家:选项排除自己家
做题5大步骤 1.看时间段:看是同比还是环比 2.看求什么:现期、基期、增长量、增长率、平均量、比重、倍数 3.找数:结构化阅读,理解核心概念 4.列式:掌握核心公式 5.计算:尽量估算,不动笔 四大核心概念:平均、增长量、增长率、比重 类型:文字类、表格类、柱状图类、饼状图类
求解量有哪些
现期 | 基期 | 增长量 | 增长率 | |
普通 | 现期量 | 基期量 | 增长量 | 增长率 |
平均数 | 现期平均数 | 基期平均数 | 平均数增长量/变化 | 平均数增长率(独) |
比重 | 现期比重 隔级比重 | 基期比重 | 两期比重差/变化 | 拉动增长率 增长贡献率 |
间隔 | 间隔基期量 | 间隔增长率 | ||
混合 | 混合增长率 | |||
年均 | 年均增长率 |
*思路扩展*
合理运用下面的方法:原理是同步放缩 现期=基期+增长量 基期 增长量 现期 假 真 --------------------------------------------------------------------------------------- 合理运用比例关系 10.6占64.3% 拿如果是11呢? 估计64.5% --------------------------------------------------------------------------------------- 基期 + 增长量 = 现期 基期*(1+增长率)=现期 =>基期*(1+增长率) + 增长量*(1+增长率) = 现期*(1+增长率) 现期 + 增量 = 下一年 --------------------------------------------------------------------------------------- 增长量 = 基期*增长率 = 现期/(1+r) * r = 现期 * r 当|r| < 5%时 1+r 可以忽略掉 --------------------------------------------------------------------------------------- 当r增长率比大小时 现期=基期+增长量 比如 1=2/3 + 1/3 第一种方法:看r r = 增长量/基期 1/3 第二种方法:看倍速 r=倍数-1 第三种方法:看 增长量/现期 1/2 因为 现期=基期+增长量 所以 当增量提升,增量/基期 和 增量/现期也会提升 --------------------------------------------------------------------------------------- 遇见求和平均数:出现几年的,很多可以看图看出来(画线) --------------------------------------------------------------------------------------- 两期倍数=现期/基期=(1+a)/(1+b)=1+r 现期=A/B 基期=A/B * (1+b)/(1+a) r=两期倍数-1 =(1+a)/(1+b) - 1 =(a-b)/(1+b) 基期倍数=A/B * [(1+b)/(1+a)] 到这里:可以结合选项差值(倍数-1=r) 得出答案 --------------------------------------------------------------------------------------- 两数相乘=r1 + r2 + r1*r2 +1 间隔增长率公式是:r = r1 + r2 + r1*r2 长 x 宽 = 面积 1.1 1.2 1.32 A B AB r1 r2 (1+r1)(1+r2) = 1 + r2 + r1 + r1*r2=倍数 r=倍数- 1 倍速= 1+r =(r1 + r2 + r1*r2) +1 1.22x1.57 = 1.9154 = (0.22 + 0.57 + 0.22*0.57) + 1 约等于1.9 扩展:适用于一切乘除法 平均数=总/类 单价 =总/个 在求比值/乘积 增长率问题上:可以转化为隔年增长率的算法 A B AB r1 r2 (1+r1)(1+r2) = 1 + r2 + r1 + r1*r2 --------------------------------------------------------------------------------------- 混合对象:混合居中,靠近两大(靠近分母) 增长率(基期量):基期量相加,增长率混合,混合后增长率靠近基期量大的 平均数(份数):份数相加,判决书混合,混合平均数靠近份数大的 占比(总量):总量相加,占比混合,混后占比靠近总量大的 混合增长率 R=A+B时 得出 A/B = (r-b)/(a-r) B A |_______________|______| a r b 顺差 = 出 - 进 (出 - 进)+ 进 = 出 B A |_______________|______| (出 - 进) 出 进 ---------------------------------------------------------------------------------------
1.基本单位
现期/本期(时间靠前 今天)、基期/前期(时间靠后 前天):时间 X:增长量 a代表分子增长率 b代表分母增长率 A:部分的现期量 B:总体的现期量
2.基本公式*
r=增长量/基期量 增长量=现期量–基期量 r=现期量/基期量 - 1 r=增长量/(现期量-增长量)=增长量/现期量 - 1 r + 1 = 倍数 = 现期/基期 --------------------------------------------------------------------------------------- 现期量 = 基期量 * (1+r) 基期量 = 现期量 / (1+r) 现期和差 = A ± B 基期和差 = A/(1+a) ± B/(1+b) 基期部分:A/(1+a) 基期总体:B/(1+b) 基期差 = (现期a-增量a)-(现期b-增量b) =(现期a-现期b)-(增量a-增量b) --------------------------------------------------------------------------------------- 比值 变化量/增长量/差值/增量 = A/B * [(a-b)/(1+a)] 如果要比较大小:可以直接看 a-b 现期比值-基期比值 1.比重的变化量:部分/整体 2.平均值的变化量:总量/份数 a>b 比值上升 a<b 比值下降 a=b 比值不变 -------------------------------------------- 现期比值:A/B 基期比值=A/B * [(1+b)/(1+a)] 1.基期比重:部分/整体 2.基期平均值:总量/份数 3.基期倍数 --------------------------------------------------------------------------------------- 比值/乘积 平均值增长率/变化率/增率(平均量独有的) = (a-b)/(1+b) r=现期量/基期量 - 1 现期比值:A/B 基期比值=A/B * [(1+b)/(1+a)] r=增长量/基期量 比值 变化量/增长量/差值/增量 = A/B * [(a-b)/(1+a)] 基期比值=A/B * [(1+b)/(1+a)]
3.常用公式
3.1 现期、基期
现期/本期(时间靠前 今天)、基期/前期(时间靠后 前天):时间 基期和差 = A/(1+a) ± B/(1+b) 基期比值:比重|平均数|倍数 = A/(1+a) / [B/(1+b)] = A/B * [(1+b)/(1+a)] ------------------------------------------------------------------------------ 现期量、基期量:数量 r=增长量/基期量 增长量=现期量–基期量 r=现期量/基期量 - 1 r=增长量/(现期量-增长量)=增长量/现期量 - 1 ------------------------------------------------------------------------------ 现期量 = 基期量 + 增长量 = 基期量 * (1+r) {推演:增长量=基期量*r} 现期差 = 现期a - 现期b --------------------------------------------------------------- 基期量 = 现期量 - 增长量 = 现期量 / (1+r) {推演:由上面演化来 现期量= 基期量 * (1+r)} = 增长量/r 基期差 = (现期a-增量a)-(现期b-增量b) =(现期a-现期b)-(增量a-增量b) --------------------------------------------------------------- 隔年基期量=现期量/(1+隔年增长率) ---------------------------------------------------------------
3.2 增长量
增加、增长 ------------------------------------------------------------------------------ 增长量 = 现期量 - 基期量 增长量 = r* 基期量 增长量 = r* 现期量/(1+r) =现期量/(1/r +1) ------------------------------------------------------------------------------ 隔年增长量=隔年增长率r * 现期量/(1+隔年增长率r) 年均增长量=(末期量-初期量)/年份差
3.3 增长率r
增长率、变化率、增幅、增速、数量一样/持平(增长率为0) 、增加减少百分数 ------------------------------------------------------------------------------ r + 1 = 倍数 = 现期/基期 现期比基期增长55%,现在是基期的1.55倍 ------------------------------------------------------------------------------ r=增长量/基期量 r=(现期量–基期量)/基期量 =现期量/基期量 - 1 =倍速 - 1 r=增长量/(现期量-增长量) ------------------------------------------------------------------------------ 间隔增长率公式是:r = r1 + r2 + r1*r2 已知2022年的量为A,2022年的同比增长率为r1,2021年的同比增长率为r2,求2020年的量? 2022:A 2021:A/(1+r1) 2020:A/(1+r1) / (1+r2) = A / (1+r1)(1+r2)=A / (1 + r1+r2+r1×r2) 底层逻辑:倍数 长 x 宽 = 面积 1.1 1.2 1.32 A B AB r1 r2 (1+r1)(1+r2) = 1 + r2 + r1 + r1*r2 倍数 = 1 + r2 + r1 + r1*r2 r=倍数- 1 所以:r = r1 + r2 + r1*r2 ------------------------------------------------------------------------------ 年均增长率 = (1+R)^n = 现期/基期 = 1+nR 注意 R != r/n ______________ 年均增长率 = 年份差 ^ V(现期/基期) - 1 (现期/基期) -1 < —————————————————————————————— 如果要比较大小:可以直接看 现期/基期 年份差 ------------------------------------------------------------------------------ 拉动增长率 = 部分增量/整体基期 * 100% 增长贡献率 = 部分增量/整体增量 * 100% 所有个体增量之和 = 总增长量 所有拉率之和 = 总增长率 所有贡献率之和 = 1 ------------------------------------------------------------------------------ 混合增长率 R=A+B时 举例:某个班3人考了80分,2人考了90分,求他们的平均分 3*80 + 2*90 A*a + B*b ———————————— = r = ———————————— 3+2 A+B A*a + B*b = r(A+B)=r*A + r*B A*a - r*A = r*B - B*b A(a-r) = B(r-b) 得出 A/B = (r-b)/(a-r) 线段法、十字交叉法、混合增长率:底层逻辑一样 3 2 B A |_______________|______| a r b 80 86 90 ------------------------------------------------------------------------------
3.4 平均量
平均量、平均值、平均分、亩产、人均、户均、单价、每... 如何找分母:均前每后 做分母 ------------------------------------------------------------------------------ 现期平均数=总量/份数 现期平均数=(a1+a2+a3+...+an)/n 现期平均数=现期总量/现期总份数=A/B -------------------------------------------------------------------------- 基期平均数 = A/B * (1+b)/(1+a) = [总量/份数] x [(1+份率r)/(1+总率r)] 基期平均数=(现期总量/现期总分数)*(1+总份数增长率r / 1+总量增长率r) 基期总量=现期总量/(1+总量增长率r) 基期总份数=现期总份数/(1+总份数增长率r) -------------------------------------------------------------------------- 平均数比值 增长量/差值/变化量/增量 = A/B * [(a-b)/(1+a)] 平均数增长量=现期平均 - 基期平均 现期平均数:A/B 基期平均数:A/B * (1+b)/(1+a) --------------------------------------------------------------------------独有 平均/人均....比 后面除以前面 比值 平均值增长率/变化率/增率(平均量独有的) = (a-b)/(1+b) r=现期量/基期量 - 1 现期比值:A/B 基期比值=A/B * [(1+b)/(1+a)] r=增长量/基期量 比值 变化量/增长量/差值/增量 = A/B * [(a-b)/(1+a)] 基期比值=A/B * [(1+b)/(1+a)]
调和平均数
—— a1*a2 核心公式:a =———————————— a1 + a2 —— 2a1*a2 减半调和平均数公式:a =———————————— a1 + a2
3.5 比重
占、比值、比重 ------------------------------------------------------------------------------ 现期比重 = 部分量/整体量 = A/B -------------------------------------------------------------------------- 基期比重 = A/B × [(1+b)/(1+a)] = [部分/整体] x [(1+整率r)/(1+部率r)] 上年的比重=基期部分/基期总体 基期部分:A/(1+a) 基期总体:B/(1+b) {推演:倒过来、再交换} 基期比重 = 现期比重 - 两期比重差 -------------------------------------------------------------------------- 比重比值 差值/增长量/变化量/增量 = A/B * [(a-b)/(1+a)] 比重差值=现期比重 - 基期比重 现期比重:A/B 基期比重:A/B × [(1+b)/(1+a)] {推演:踢出去、统一分母、再相减} 可以得出的结论 比重上升:a>b 比重下降:a<b 如果a>0:增长率>比重差 --------------------------------------------------------------------------- 大 中 大 隔级比重 = ———— * ———— = ———— 中 小 小
3.6 倍数
几倍、多几倍 ------------------------------------------------------------------------------ 倍数的3种问法 A是B的几倍:A/B A比B增长(多 增长)几倍:(A-B)/B = A/B -1 A超过B的N倍:A > B×N -------------------------------------------------------------------------- 现期倍数 = A/B 基期倍数 = A/(1+a) / B/(1+b) = A/B * (1+b)/(1+a) -------------------------------------------------------------------------- 翻n番 = 2^n倍 -------------------------------------------------------------------------- 增长率+1=倍数=多几倍+1 增长率 r = (B - A) / A × 100% 倍数 m = B / A 多几倍 n = (B - A) / A 增长率<100%的时候 增长百分之多少 >1 2 3... 增长几倍
4.公式表
5.区分
5.1 环比同比
环比:与上一时期比 (2022年3月 2022年2月、上半年 下半年)月份变化 与上一个最小的时间单位相比,向上循环一个周期 同比:去年同一时期比(2023年3月 2022年3月)年份变化,可能是挨着月份相互比较 与上年同期相比
5.2 顺差逆差
顺差(净出口额、出超) 出口商品 > 进口商品 逆差(净进口额、入超) 出口商品 < 进口商品
5.3 成数与翻番
成数:几成就相当于十分之几,也就是百分之几十 翻番:翻N番,变为原来的2^N倍
5.4 倍数与比值
倍数:用来表示二者的相对关系; 比值:用来表示二者之间的比例关系(A与B的比值,即A:B = A/B) 识别:时间+倍数 公式 1.现期倍数 A是B的几倍:A/B A是B增长(多)几倍:(A-B)/B = A/B - 1 增长率+1=倍数=多几倍+1 增长率 r = (B - A) / A × 100% 倍数 m = B / A 多几倍 n = (B - A) / A 2.基期倍数=A/B*[(1+b)/(1+a)] (先截位直除A/B,再看(1+b)/(1+a)与1的关系) 倍数的3种问法 A是B的几倍:A/B A比B增长(多)几倍:(A-B)/B=A/B-1 A超过B的N倍→A>B×N
5.5 百分数与百分点
10%————>15% 比例或百分比的表达方式 增速:5% 描述百分比变化的增量单位 5个百分点
5.6 增量 与 增速 与 增幅降幅 与 变动幅度
100——————>120 增量 = 新值 - 旧值 = 120 - 100 = 20 增速 = (新值 - 旧值) / 旧值 × 100% = (120 - 100) / 100 × 100% = 20 / 100 × 100% = 20% --------------------------------------------------------------------------------------- 增量 增速 增幅 降幅 变动幅度 20 20% 20% 20% 20% -20% 20%
6.速算技巧
6.1 精算法/同步放缩法
原理是一样的
精算 3位数/4位数:减去的两位数和前两位数的关系 减/加 的数 = (倍数a * 前2位) + (倍数b * 前1位) 这里的倍数b:可能是负数、可能是分数 精估算 也可以减去一个同样的倍数:比如1.1倍数 8352 8352-82 ———— ———————— 7478 7478-78
例题
精算
361 361-108 108=3*36 ———— —————— 139 139-39 39=3*13 543 543-103 103=2*54-1*5 ———— ———— 123 123-23 23=2*12-1*1 254 254+83 83=3*25+4*2 ———— * 152 ————————* 152 115 115+37 37=3*11+4*1
6.2 截位直除法
截位直除法 | 一个数×1.5=本身+本身的一半 一个数×1.1=错位相加 | |
除前看选项;大则截两位,小则截三位; 不要一直算下去,边除边看好习惯 | ||
截位 | 截几位,就是四舍五入保留几位 左边第一个不是0的数字开始截取 | |
截谁 (看除了几次) | 一步除法【分母】:建议只截分母
可对分子分母进行+1或-1的处理,方便约分 | |
截几位 (四舍五入) | 选项差距大:截两位 首位不同 12、22、32 53 59 9-3=6 | |
选项差距小:截三位 53 54 4-1=3 特别:当接近的时候,看是否小于10%(小于就是差距小 否则差距大) 19 20看着是属于差距大的,但是是属于差距小的 20-19=1 1/19<10% 18 20 20-18=2 2/18>10% | ||
注:若选项之间存在约10倍的关系时,需要看小数点、位数、单位,要注意判断数量级(几位数) 小技巧:量级不同时将分母化成1点几算更好比较 ----------------------------------------------------------------------------------------------------------------- 12345/6789 A.1.82 B.18.2 C.2.34 D.23.4
此时可以直接看成:12345/6800 |
[234.4/(1+14.06%)] / [9191.6/(1+21.46%)] 差距大 23/11 / 92/12 =23/11 * 12/92 =1/11 * 12/4 =3/11
6.3 胜率法
577 592 592-577=15 ———— ———— ———————————— 1003 1059 1056-1003=53 58% > 35%
6.4 倒除法
如果 分子/分母 不好算:可以 分母/分子 大 变 小 小 变 大
6.5 尾数法
尾数的运算可以比较选项中对应的尾数
6.6 化数
6.6.1 百分数化为——>分数
百化分:百分数化分数 1.常见的分数化百分数 2.三步速记法 ①“7 ~12”,加和(整数部分+分母)为20:12.5%=1/8 11.1%≈1/9 9.1%≈1/11 8.3%≈1/12 7.7%≈1/13 ②(16.6)和(14、7)互换的两对:16.7%≈1/6 6.25%=1/16 14.3%≈1/7 7.1%≈1/14 ③(17、18、19): 5.963%≈1/17 5.6%≈1/18 5.3%≈1/19 3.百化分方法(增长率) 放缩法 1.43%: 14.3%≈1/7,则1.43%≈1/70 67%: 6.7%≈1/15,67%≈1/1.5 1.9%: 1.9%≈2%=1/50 取中法 18.5%:介于16.7%≈1/6和20%=1/5之间,则18.5%≈1/5.5,n=5.5 15.4%:介于14.3%≈1/7和16.7%≈1/6之间,则15.4%看成1/6.5,n=6.5 公式法:N=100/百分号前的数字(保留小数点后一位) 44%:44/100=1/N,N=100/44≈2.2,则44%看成1/2.2 37%:N=100/37≈2.7,则37%看成1/2.7
6.6.2 分数化为——>小数
1/2——>0.5 1/3=0.333 1/4——>0.25 1/5——>0.2 1/6——>0.167 1/7——>0.143 1/8——>0.125 1/9——>0.111 1/15——>0.67
6.6.3 平方数
6.6.4 立方数
6.6.5 变化率 变化幅度
6.7 高位叠加法
28.3 37.8 64.4 27.7 十位:2+3+6+2=13 个位:8+7+4+7=26 十分位:3+8+4+7=22 1 3 2 6 2 2 --------------- 1 5 8.2
6.8 线段法
线段法、十字交叉法、混合增长率:底层逻辑一样
混合思想 8 2 |_______________|______| 30 38 40 男 女 特点:居中不正中、偏向数大的部分、距离与量成反比 举例:求男女人数比 男30分 女40分 全部38分 2人数比 8人数比 ------------------------------------------------------------------------------ 线段法的使用条件 1.线段上方:C=A+B 2.上下相乘有意义 3.A*a + B*b = C*c ------------------------------------------------------------------------------ A a r-b \ / \ / A r-b r ◕‿◕ ―― = ―― / \ B a-r / \ B b a-r 混合增长率 R=A+B时 得出 A/B = (r-b)/(a-r) B A |_______________|______| a r b
6.9 拆分法
第一种:把一个分数拆分成 整数+分数 1577 144 5573 3 ———— = 1 + ———— ———— = 1 - ———— 1433 1433 5576 5576 ------------------------------------------------------------------------------ 第二种:把百分数拆分成 熟悉好算的百分数 8800*57% = 8800*50% + 8800*5% + 8800*2% = 4400 + 440 + 176 = 5016 ------------------------------------------------------------------------------ 第三种:把百分数拆分成 分数+百分数 35% = 1/3 + 2% 47% = 1/2 - 3% ------------------------------------------------------------------------------ 第四种:合理运用记忆数 6217*0.83 = 6217 * (1-0.17) = 6217 - 6217/6 ------------------------------------------------------------------------------
6.10 假设分配法
分配原理:B = A + x = A + Ar ------------------------------------------------------------------------------ r>0 举例:B=257 R=12% 257 / \ / \ 200 200*12%=24 257-(200+24)=33 / \ / \ 30 30*12%=>3 ----------------------------------------- 基期=200+30=230 增长量=24+3=27 ----------------------------------------- ------------------------------------------------------------------------------ r<0 举例:B=831 R=-10% 831 / \ / \ 900 900*-10%=-90 831-(900-90)=21 注意:这里如果分多了就是负数 / \ / \ 23 23*-10%=>-2 ----------------------------------------- 基期=900+23=923 增长量=-90-2=-92 -----------------------------------------
另外的思路
现期13558,增长率7.8,求现期 13000 * 7.8% = 1000 基期=13000+(13558-13000-1000)=12558 其原理为 x增长量 基期*(1+r) = 现期 (13000+x)*1.078 = 13000*1.078 + x*1.078 = 13558 = 13000 + 13000*0.078 + x*1.078 = 13558 可忽略 基期 + 增长量 = 现期 增长量 = 现期 - 基期
7.坑位
江苏卷子:初期量要向前推一年 十二五规划,指2011-2015年 2011年初:是2010年末 如果是2015-2018:但是2014有数据,那么也要把2014年算上 如果指定谁为基期就不管