行测笔记(仅供参考)

文章目录:

一:常识

二:言语理解

1.片段阅读

1.1 标题填入/主旨观点 

1.2 细节题/文意判断

2.逻辑填空

3.语句表达

3.1 语句排序

3.2 语句衔接

3.3 下文判断

三:判断推理

1.图形推理

1.1 技巧 

1.2 规律

2.定义判断

3.类比推理

4.逻辑判断

4.1 削弱加强

4.2 谁真谁假 

4.3 一拖五

四:数量关系

1.解题思路方法

1.1 代入排除法

1.2 倍数特性法

1.3 余数特性法(余同加余-和同加和-差同减差)

1.4 奇偶特性法

1.5 赋值法

1.6 极限法

1.7 逆向推理法

1.8 整除法

1.9 十字交叉法

1.10 方程法

2.核心题型解题方法

2.1 工程问题

2.2 行程问题

2.3 经济利润问题

2.4 几何问题

2.5 排列组合及概率问题

2.6 溶液问题

2.7 和定最值问题

2.8 容斥问题

2.9 等比等差问题

2.10 统筹问题

2.11 方阵问题

2.12 钟表问题

2.13 牛吃草问题

2.14 年龄问题

2.15 植树问题

2.16 剪绳问题

2.17 星期日问题

2.18 页码问题

2.19 和定最值问题

2.20 最不利问题

2.21 鸡兔同笼问题

2.22 空瓶换水问题

2.23 概率问题

五:资料分析

求解量有哪些

*思路扩展*

1.基本单位

2.基本公式*

3.常用公式

3.1 现期、基期 

3.2 增长量

3.3 增长率r

3.4 平均量

3.5 比重

3.6 倍数

4.公式表

5.区分

5.1 环比同比 

5.2 顺差逆差

5.3 成数与翻番

5.4 倍数与比值 

5.5 百分数与百分点 

5.6 增量 与 增速 与 增幅降幅 与 变动幅度

6.速算技巧 

6.1 精算法/同步放缩法

6.2 截位直除法 

6.3 胜率法

6.4 倒除法

6.5 尾数法

6.6 化数 

6.6.1 百分数化为——>分数 

6.6.2 分数化为——>小数 

6.6.3 平方数

6.6.4 立方数

6.6.5 变化率 变化幅度 

6.7 高位叠加法

6.8 线段法

6.9 拆分法

6.10 假设分配法

7.坑位


相关笔记 :汇总

行测时间不够:基础水平,时间观念
    1.基础水平
        1.1 方式方法:答题技巧,速算技巧,别纠结舍难题,多动手勾画,定位或预判题型
                      多做套卷真题,常识直接涂答题卡

        1.2 熟能生巧:多做


    2.时间观念
        2.1 做题顺序 用时建议:言语30、判断30、资料25、数量20、常识5、答题卡10

        2.2 限时训练:别慢悠悠做(考试时间120分钟,涂答题卡10分钟)

一:常识

选项比较:话风,同质化比较

不会懵b c


选
    1.不绝对化的:一般、可能、正常的情况等
    2.一身正气:觉悟要高
    3.达成目标,近期简单,远期难
    4.与信息词相互关联的选项
    5.日常积累:相信自己记忆,自己熟悉的,不要叛逆
    6.选择年份接近现在的


不选
    1.绝对化的选项:必须、禁止、所有、只有等
    2.选项代数字
题型:政治、文化、经济、法律、生物医学、地理、数学、历史、生活、农学、科技、物理

二:言语理解

技巧 
   1.大多在首尾句找到作者观点,其余文段压缩阅读
   2.可以利用技巧但有些会出错重在理解;语感不一定靠谱;最好尽量浏览完材料
   3.高级词可能正确
   4.注意特殊符号:引号、冒号、破折号


不选
   1.选项是文中原话不选(完全一样)
   2.绝对化语气不选
   3.反常识不选

选
   1.选积极向上的的
   2.启事类:选深成的、激励的、触动的
   3.标题类:短小精悍的选项

------------------------------------------------------------------------------

关系类型举例
    ➀转折关系:“但是”“但相反地”“但另一方面”“实际上”
               “通过对比”“经与......对比”“相较之下”
               “然而”“然而整体而言”“其实不然”
        转折词后为文段重点,转折前的表述通常为错误的选项,直接看转折词之后的内容
        “很多人/大多数人/传统观点/以前/有些人/不少人认为+转折关联词”

    ➁因果关系:“因为”“因而”“因此”
               “造成”“导致”“由于”
               “之所以.....是因为....”".至工"

    ➂并列关系:“是.….不是.……”“不是而是"
               “既…...….又.…...…”“又.….….又....…”“既........也......"
               “有时.......有时.""—方面......另一方面”“此外”
        不同话题:全面概括                        相同话题:提取共性
        多个方面:许多、一些、不同、各种等         片面:排除

    ➃条件关系:“只要......就....…””只有......才.....”任凭......也....…."
               “无论...都..…”“除非.........…”““不管....总......"
               "A是B的必要条件、前提、基础、保障、途径”“必须”“务必”“除非”
        条件是重点,即“才”“都”“必须”“务必”“除非”等前面的内容是重点

    ➄递进关系:“并”“也”“还”“更”
               "不但......而且...…”“不仅”“甚至”“特别”“尤其”
               “重要的是”“关键是”“核心是”
               不但......而且.......甚至..…”(多重递进时,最后一层递进为文段重点)
        递进关联词后为文段强调重点

    ➅对立关系:“如果不...那么”一旦...则..."倘若.可能......"
        有观点类:观点+否则.....不然......(不重要)
        无观点类:背景陈述+如果不...那么....客观问题+如果不.....(推导出解决问题的对策,对策是重点)

    ➆时空关系(时间空间):过去.…...现在......;传统....现代;美国.…....中国......
        前后对比,将要强调的不同点放到文段的后半部分,也就是文段的重点

1.片段阅读

总体方法

转折关系
	格式
		虽然/一方面 A,但是/可是/然而/却/不过/其实/事实上/实际上/另一方面/更为重要的是 B
		别人观点+转折:人们/大众/其他人 认为

	特点:转折之后是重点、“别人观点+转折”前后结合看
	

因果关系
	格式
		因为 A,所以/由此看见/看来/导致/造成/使得/致使 B
		宏观指代词:这就意味着/这样

	特点:重点关注结论、注意选项设置(匹配结论话题即可)
	

必要条件
	格式:只有 A,才/才能 B = A是B的必要条件 = 不A则不B			
			只有有时会省略
			A是B的前提、基础、保障、途径、方式、方法	

	特点:A条件是重点


对策引导
	格式
		正向引导词:必须、需要、应该、应当、务必
		反面论证给对策:如果/倘若/一旦......+不良结果
		行文结构给对策:提出问题-分析问题-解决问题、提出问题-解决问题、问题-精准原因-严重后果

	特点:有结果找原因、没结果找对策(意在强调 文章概括 重在说明)
	

并列关系
	格式	
		显性:同时/此外/另外/并且、一方面...另一方面
		隐性:标点符号(;)、并列层级、相同句式

	特点:不分主次、不可偏颇、全面概括;排除法做题
	
	
主体话题法
	格式:注意首句、注意主体对象(人 事物 概念)

	特点:抓主体/话题去匹配选项
	

文段中的总与分
	格式:谁为谁论证;谁为谁铺垫
		总:观点、结论、对策;别人论证它;别人引出它
		分:铺垫、论证、解释;引出中心;论证中心;解释中心

	特点:宏观(主体话题法 文段中的总与分)> 微观

1.1 标题填入/主旨观点 

提问方式:意在、主旨、主要、概括、强调、重在、想


解题方法
    以句子为单位读题边读边划
    带着中心句或话题匹配选项对比则优(细节对比 差中选优 优中选优)
    标题具有概括性体现文段重点


干扰选项特征:非文段重点、非文段核心话题、无中生有偷换概念

1.2 细节题/文意判断

细节理解:得出/推出
    选项短:先浏览选项,后阅读文段。排除+确定
    选项长:扫一眼选项
        选项有明确的定位功能——摇摆式定位、排除+确定
        选项无明确的定位功能--读完文段再作答(划分话题群)
	
	
细节查找
    查找要素原因类:定位查找原因词/结论词
    查找目的意义类:定位对象就近查找其证明的内容

2.逻辑填空

1.选语境相呼吁的词,多注重逻辑关系

2.近义词:选择范围大的

3.语意轻重:最重、最轻

4.成语辨析:选择晦涩难懂的
找照应
    解释说明
        逗号 冒号 破折号:对所填的词的解释
        例如
        代词	
		
    逻辑关系:因果、递进(并 并且)、相反、并列

    结构照应:三部分并列修饰同一对象(3相同 111递进 2同1异);总分总

    限定性照应:背景前提推结论

------------------------------------------------------------------------------

辨选项:多个空可以选确定某选项从而确定答案

    相近的词语拆分更方便理解
   
    表达倾向		

    固定搭配对应
        词性搭配:v+n/adv    n+v/adj
        需要留心是否出现“和”“及”“与”“同”等并列标志词
        注意积累常见搭配

    程度轻重对应:轻易程度要匹配

    好坏

    解释说明对应
        标志词:是、就是、即、无异于、无疑是、可以说、比如、例如、冒号(:)、破折号(——)等

    重点词句对应
        主题词:即文段围绕论述的核心名词
        拟人、类比等形象表述:的“像..…....那样..…”“正如”“和...一样”“...有异曲同工之妙”等
        中心句或文段中的完整语句

    前后呼应对应:相同、相反等

3.语句表达

3.1 语句排序

排除法做题:首句+捆绑,缩小答案范围;首尾句兜底
    不适合做首句:指代词(无明确指代对象)、结论词、补充类表述
    适合做首句:下定义、总结句
    捆绑:指代捆绑、逻辑关联捆绑(因果 转折 递进)、句群捆绑(话题信息相同)、行文结构(提出分析解决问题 总分总)

优先尝试:注意验证,尝试失败,及时止损

利用选项提示

代词、名词、时间

3.2 语句衔接

特征:所填入的信息是对上下文原有信息的重复


技巧
    横线在首尾:总结全文,兼顾衔接语句
    横线在中间:承上启下(注意引用上下文话题)

3.3 下文判断

有新话题按照新话题预测(注意感情倾向)

没有新话题排除法来做	

三:判断推理

1.图形推理

1.1 技巧 

笔画数
    怎么判断一笔画:奇点数量为0或2

    什么是奇点:以一个点为中心,发射出奇数条线
        注意!端点都是奇点、奇点数一定是偶数

    如何确定笔画数:笔画数 = 奇点数/2


六面体拼合:马走日方法
    原理:走两步会回到原来的位置

    技巧:找点/三个面(左右左下右下关系)

    注意
        中心对称/镜像:不存在的面直接排除
        遇见有争议的两个选项:直接展开和原图比较,正确的顺时针排序,错误镜像是逆时针排序

1.2 规律

图形
	数量关系:度数(角度 旋转角度)、相同形状面数量、封闭区间个数
			 线条数(横线 竖线 平行线)、交点数(图形内外交点 交点与曲直线关系)
             切点数、相交边数、边上点数、平行线数、穿过方格的数量  
             笔画数和封闭空间数量一致、部分数(最近3者之间关系)
			  
	位置关系:平移(顺逆交互 内绕图形各点移动)、旋转(剪切部分旋转)、翻转、截面、展开图
	
	空间关系:对称(对称轴旋转 中心对称 轴对称 对称轴路径 对称轴和阴影平行还是垂直 角度旋转)
             凹凸性、曲直性、封闭性、去同存异、六面体拼合
			 公共边、相交、相离、相切(相切于面)、垂直、开末线条关系

    黑白运算:图形运算、元素运算



汉字
    数量关系:笔画数(相同 递增 递减 奇数 偶数 运算)
             拼音、封闭区间个数、横竖撇捺数量(间隔)
	
    空间关系:部分数(相同 递增 递减)
             汉字结构(全包、半包、上下、左右、偏旁、相同元素)
			 对称、笔尾逆时针、去同存异、首笔画


		
字母  
	数量关系:字母个数、交点数、笔画数、直线数量、点数、字母类型数量
	
	空间关系:对称、开口、共性、全包半包、间隔字母、部分 完全、求异求同、曲直、字母移动



数字
     数量关系:封闭空间个数

     空间关系:对称、平移、旋转


	
黑白块
    数量关系:黑白数量(横竖)、种类个数、对称轴两侧数量、两图对比黑白点相同数量
	
	几何关系:周长、面积
	
	空间关系:移动(对角 顺逆上下左右 整体移动反复 内外圈)
             对称(中心对称轴对称交互)
             部分 完全、行列依次变化、连接方式(点点 面面)

    黑白运算:同白异黑、同黑异白、旋转再运算

2.定义判断

核心:看清问题,抓住信息,选项比较 

主客体
    主体:指一个动作或事件的发起者或执行者;
    客体:指一个动作或行为指向的对象;
        当主体或客体有明确的范围界定时,可优先进行选项对应、对于明显不符合的选项进行排除


条件句式
    表示方式的引导词:通过、利用等
    表示原因的引导词:因为、由于等
    表示时间条件的引导词:当…....时、在.…....时等
    表示结果的引导词:所以/因而/从而/带来/引发/导致/使得等表结论的词汇

3.类比推理

要多积累:成语、诗句、典故、生活常识

语义关系:近义词、反义词、比喻、象征
    语义关系中常搭配考查的二级辨析主要有感情色彩、词语结构、词性


逻辑关系
    全同关系:同一个意思
    并列关系:矛盾关系(没有第三种关系)、反对关系(还有其他情况存在)
    交叉关系:两边有中间共同的属性
    包容关系:种属关系、组成关系
    对应关系:一定范围事件包含的各词语要素之间构成的相互对应,包括物品、职业、地,点、原因、结果、方式、行为、工具、功能等多种对应
        配套使用、物品与原材料 制作工艺、物品与功能、属性关系、因果关系
    前后关系:马斯洛需求层次理论图(生理-安全-归属-尊重-自我实现)


语法关系
    造句子(主谓宾)
    古今说法不同用法一致
    逆向思维
    常识
    南辕北辙    
    事理顺序:事物发展规律



特殊题型
    曲直类比推理:完全对立,且只有这两种
        呼吸:反对关系(还有屏住呼吸的状态)
        动静:矛盾关系
        进退:反对关系(还有原地不动的状态)
        黑白:反对关系(哈有其他不同的颜色)
    比喻:纸老虎、铁公鸡

4.逻辑判断

4.1 削弱加强

加强论证(赞同):加强论证(搭桥 补范围)、补充论据(必要条件 解释论点 举例子)
		提问方式中带有:“加强”“支持”“假设”“前提”等关键词
		解题思路:表述直接的力度强、与话题接近的力度强
			读(论点意思)、
			析(核心话题)、
			比(比主体、比范围、比话题、比强弱)、
		加强方式
			(1) 搭桥
					论点和论据中出现了两个没有明显相关性的概念,优先考虑搭桥,指出两者相关
					论点和论据中分别出现了一个整体和一个部分的概念,优先考虑搭桥,指出部分可以代表整体
					当提问方式是前提、假设、必要条件、加强论证时(考查搭桥加强的可能性非常大)
			(2) 补充论据:“解析”论点成立的原因、“举例”证明论点成立   




削弱论证(反对):削弱论点(直接 举例否定)、削弱论证(拆桥 补范围 因果列置)、削弱论据、他因削弱
		提问方式中带有:“削弱”“质疑”“反驳”“否定”等关键词
		解题思路
			读(论点意思)、
			析(核心话题)、
			比(比主体、比范围、比话题、比强弱)、
		削弱方式
			(1) 拆桥:破坏论点和论据之间的关系(拆桥的力度要强于单纯的否定论据)
					论点和论据中出现了两个有明显关系的概念,此时优先考虑拆桥,指出两者不相关
					论点和论据中分别出现了一个整体和一个部分的概念,此时优先考虑拆桥,指出部分不能代表整体
					论据是调查或实验数据,且没有直接否定论点的选项,可能会考查拆桥(常见的选项表达方式为调查数据不具有代表性)
			(2) 否定论点		

解题方法 

方法!!!
        1.倒序法:问题——>论点(选项与论点据有关)——>选项——>看前文代入排除


        2.主语法
            1)一个主语
            2)两个主语(因为a所以b):找b
            3)三个主语(因为a所以b所以c):有bc找ab、有ac找bc(缺啥找啥 和b一定相关)、若一个没有缺失必对


        3.常识法:日常常识问题


        4.题型法
            评价型:一般选项兼顾双方
            结论型:一般语气较弱的选项


        5.加强削弱法 
            对策效果型
                A方法有效果
                    加强:没有A方法效果更差
                    削弱:没有A方法效果更好
                A方法无效果
                    加强:没有A方法效果更好
                    削弱:没有A方法效果更差

            正方:A导致B  反方:C导致B
                削弱正方:C导致A
                削弱反方:A导致C

            因果倒置
                论点:A是B的原因
                削弱:B是A的原因

            论据为部分,论点为整体
                加强:部分可以代表整体/其他部分也一样
                削弱:部分不可以代表整体/其他部分也不一样

            对比试验型
                论据:A喝水,B不喝水,喝水体重下降
                论点:有利于减肥
                    加强(排除他因):除了喝水都一样
                    削弱(另有他因):喝水还需要注意饮食

                论据:长时间照明会扰乱幼鼠生物钟
                论点:长时间照明对扰乱小孩睡眠和苏醒规律
                    加强(类比相似):基本相同
                    削弱(拆桥):差异很大


        6.A——>B法
            如果A那么B
            只有B才A
            B是A必不可少的条件
            
            否定:A且-B    -A且B


        7.去同存异法:前后位置不变

4.2 谁真谁假 

一真一假型(每个人都对一半错一半):非黑即白,如果不对再假设第一个人的前半段话为真
	技巧:第一个人的后半段话为真[因为如果优先第一个为真会很快得出答案  出题人不允许这么快]


三句话型(一人全对,一人全错,一人对一半错一半):如果它为假,那么就都为假了
	 技巧:选最大信息量,即三个人都提到的对象为真


欺负老实人型(只有一个人说的对,一般是四个人说话。最后有一个评理):直接三假一真
	技巧:评理人提到的那个对象,其他凡是提到这个对象的人,以及被提到是(不是)该对象的人的话都为假
	      没(被)提到的该对象那个人的话为真


人多欺负人少型 (两个人真话,两人假话)
	技巧:先找到矛盾的两人放一边
	     另外两人中谁提到的人最多谁说的-为真
	     另一人说的为假


欺软怕硬型 
	技巧:硬气程度→“所有 必须>有的 可能 也许>具体的人和事”
	     则逆着最软的人说即为选项


不同中找相同型
	技巧:划掉相同的,对比不同的 选重复人


4321找弱鸡型
	技巧:找弱鸡因队友为真、列表

4.3 一拖五

选拔类(几进几):数数+反推,确定捆绑区间(由七进四推出三进二)


排序类:推荐代入,最多隔几排选项优先从后往前代入
    注意:A和B隔3排,就是占了5排


组合类
    题干信息:列出数量关系(确定区间)、找到特别的(比如有一个 不和其它任何一个在一组)
    选项:找出与其他互斥的信息

四:数量关系

1.数学部分不会的:选B多
  很难的选A B,B偏多
  简单计算可以得到答案的选C多

2.ABCD均匀分布:没做过的选避开选择过的选项

3.蒙整不蒙零、蒙奇不蒙偶

4.选项有升降:最大最小不必看,答案多为中间项

5.选项多整百整千多为正确选项

6.比例选项可以整除多为正解

7.复杂问题:尾数不同采用尾数法

8.极值问题:最小多为第二小、最大多为第二大

1.解题思路方法

1.1 代入排除法

使用范围
    1.看题型:多位数、年龄、余数、不定方程
    2看选项
    3.选项信息充分;选项为一组数。(问法:分别/各)
    4.剩两项:只代其中一个


使用方法
    1.先排除:奇偶、倍数、尾数
    2.再代入:
        (1)从简原则:方便计算的数,整十、整百的数
        (2)最值原则:问最大,从最大开始代入;问最小,从最小开始代入
                    对于生活中的问题,注意用生活思维

 171e2ec65585f5cd3b91d258ed9be7ed.png

1.2 倍数特性法

整除型(平均分配物品、平均数)
    如果 A=B×C (B、C均为整数),那么A能裤B整除,且A能被C整除
    三量关系(A=B×C)∶行程问题、工程问题、经济利润问题


余数型
    若总数=ax+b    (a,x均为整数)
    则(总数-b)一定能被a整除


比例型
    若a/b=m/n    (m、n互质),则a是m的倍数,b是n的倍数;
    若a=m/n * b  (m、n互质),则a是m的倍数,b是n的倍数;
    若a=m/n * b  (m、n互质),则a=m/(m+n) * (a+b);

    比例型适用于:
        题干特征:分数、百分数、比例、倍数
        对象特征:描述对象为不可分割的整体,整数才有意义(如人、车、年龄等)

a1dbba75bc5745bee7a5196ff886f445.png

1.3 余数特性法(余同加余-和同加和-差同减差)

同余问题核心口诀:“最小公倍数作周期,余同加余,和同加同,差同减差”
    1.余同加余:“一个数除以4余1,除以5余1,除以6余1”,这个数是60n+1;

    2.和同加和:“一个数除以4余3,除以5余2,除以6余1”,这个数是60n+7;

    3.差同减差:“一个数除以4余3,除以5余4,除以6余5”,这个数是60n-1;
        在这里,60为(4、5、6的最小公倍数),n的取值范围为整数,可以为正数也可以是取负数
        在题干中看到“某物按×个分组还余y个”的条件,这种分组、分类有余的题目就是典型的余数特性题目

7a0985e2fef35155638798d4162c4728.png

同余定理:余数的和差积,决定和差积的余数

a           b                    a+b        a-b            axb
—— 余3      __余2        则      ————余5    —————余1       ————与6
7           7                     7          7              7


    如果余数等于分母:余数就是0

    如果余数超过分母:余数 = 余数 = 分母

1.4 奇偶特性法

在乘法中
    若因子中存在偶数,则结果为偶数;无偶数则结果为奇数(有偶就偶)
        ①奇数×奇数=奇数
        ②偶数×偶数=偶数
        ③奇数×偶数=偶数

    若  几个整数的和(或差)为奇(或偶)数
    则这几个整数的差(或和)为奇(或偶)数


在加减法中
    两个因子奇偶性相同,则结果为偶数。两个因子奇偶性不同,则结果为奇数(同偶异为奇)
        ①奇数±奇数=偶数
        ②偶数±偶数=偶数
        ③奇数±偶数=奇数

1.5 赋值法

题型
    工程问题、混合配比问题、加权平均问题、流水行船问题、往返行程问题、几何问题、经济利润问题都常用到“赋值思想”


规律
    当题目所给信息中“未涉及”到某个具体数量的大小
    通常出现“倍数”“分数”“百分数”“比例”
    并且该数量的大小“不影响”最终所求结果,可赋值


技巧
    观察题目所给的数值(分数、百分比、比例),赋值数多为这些数的公倍数
    工程量、工作量等可将每天推进量赋值为1
    准确列出方程

1.6 极限法

极值思想:是分析题目条件后,构造出满足题意的“最极端情况”,是极值在构造法中的运用形式


规律:出现“至多”、“至少”、“最多”、“最少”、“最大”、“最小”等字眼时,我们要有“极值思想”


技巧:题目提问中有“至少...…才能保证...…”那么“保证”后面的情况是必然发生的情况(即:最不利情况数+1)
    两  要:要分析题目条件后,构造出满足题意的最极端情况,要应用极端情况进行解题
    一不要:不要忽视可能存在的情况
            在解题时一定要全面思考,不能忽略可能存在的情况,做到多想一点、想全一点
    一原则:和定最值的原则,总和数不变
                求最大量的最大值时,其他值尽可能地小
                求最小量的最小值时,其他值尽可能地大

1.7 逆向推理法

要注意培养逆向思维解题题感,跳出思维陷阱
    逆向推导∶将过程颠倒,形成与之相反的运算过程从后往前获得所求值
              解题关键在于将过程反向推导,形成解题思路与方法
    正反互补∶当所求情况过多、计算复杂时,可以考虑用整体减去与之相反的情况来求解,简化计算过程

1.8 整除法

规律
    当题目中:出现了“每、平均、倍数、整除、约数”等字眼的时候
    当题干中:出现了“倍数”、“分数”、“百分数”、“比例”这些数据时


特殊数字整除判定
    2 (5) 整除:观察数字的“末位”数字能否被2(5)整除
    4(25)  整除:观察数字的“末两位”数能否被4 (25)整除
    8 (125)整除:观察数字的“末三位”数能否被8 (125)整除
    3 (9)  整除:观察“各位数字之和”能否被3(9)整除


普通数字整除判定
    一般采用分解因式的方法进行快速判断
        例如:判断一个数字能否被6整除,6=2×3,则只需要判定该数能否被2和3整除;
             判定531能否被47整除,可以将531分解为(470+61)进行判断;

1.9 十字交叉法

基本原理:部分比值与混合比值交叉做差之比 = 等于部分比值的分母比 (分母比:看分母是否是题目的问题)

十字交叉法最先是从溶液混合问题衍生而来的
    若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r
    则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=(r-b)/(a-r)
        在解题过程中一般将此式转换成如下:大数-小数

        A         a         r-b
                   \       /
                    \     /                A    r-b
                       r            ◕‿◕  ―― =  ――
                     /   \                 B    a-r
                    /     \ 
        B          b       a-r


            混合增长率 R=A+B时	得出 A/B = (r-b)/(a-r)

                    B          A
            |_______________|______|
            a              	r      b


            ①用来解决两者之间的比例关系问题
            ②得出的比例关系是基数的比例关系
            ③总均值放中央,对角线上,大数减小数,结果放对角线上

除了典型的溶液混合问题,还能应用在两部分混合增长率问题、平均分数、平均年龄等问题
比值可以是“平均数”“比重”“浓度”“利润率”“折扣”等

1.10 方程法

基本方程
    掌握基本的"设元方法",准确找出题目中的等量关系进行列式,是数学运算中最重要的方法


不定方程
    经常会遇到含有1个未知数的方程,也可能遇到含有2个未知数2个方程的方程组,或者3个未知数3个方程的方程组,这些方程或者方程组一般都有确定的解
    解不定方程问题常用的解法:综合利用整数的奇偶性、自然数的质合性、数的整除特性、尾数法、余数特性、特殊值法、代入排除法等多种数学知识来得到答案


不等式
    在设元求解的过程中,根据题意所得方程可能是等式方程,也可能是"不等式"方程
    即所求的值是一个数量区间,而非一个定值
    相较于等式方程能求出精确值,不等式方程还需要我们对取值"区间做出判断"

2.核心题型解题方法

2.1 工程问题

基础知识
    1.工作  量 = 工作效率×工作时间    W=pt
    2.工作效率 = 工作  量÷工作时间

    两两合作:求出”最小公倍数“,列式组合求解


解题思路
    1.条件只给出时间的具体值:通过给总量赋值,一般将总量设为时间的公倍数,从而计算出给出条件的效率
    2.条件中不仅有时间,而且有关于效率的比例关系,通常给效率赋值,通过公式计算出工作总量
    3.题目中有效率、时间、总量三个中的任意两个的具体值,则代入公式计算出第三个即可



合作完工、交替完工、青蛙跳井

2.2 行程问题

基础知识
    平均速度=2V1*V2 / (V1+V2)

    基本公式:路程=速度×时间

    相遇 背离问题:路程和 = 速度和(大速度+小速度) × 时间

        多次相遇问题:时间一样
            两岸出发
            同岸出发
        

    追及     问题:路程差 = 速度差(大速度- 小速度) × 时间

    流水行船问题
        顺水行船:路程=(船速+水速)×时间
        逆水行船:路程=(船速-水速)×时间

        V顺 = V船 + V水
        V逆 = V船 - V水
            V顺 + V逆 = 2V船
            V顺 - V逆 = 2V水

    火车过桥(隧道)︰火车速度 × 时间 = 车长 + 桥长(隧道长度)                   


解题思路
    根据题干先判断出题型,尽量能画出简易图,根据各个量之间的关系代入上述对应的公式即可


补充知识
    ①时间一定,路程和速度成正比
    ②路程一定,速度和时间成反比
    ③速度一定,路程和时间成正比
    ④当行程中某一个量为定值,且出现比例时,可以考虑用比例求解

181a367fa214485aaa695ab2a94b6098.png

81c0a4841b6fdd194e235bc76fa81961.png

2.3 经济利润问题

基础知识
    1.利润=售价-进价
    2.利润率=利润÷进价            利润=进价*利润率
            =(售价-进价)÷进价
            =售价/成本 -1
    3.售价=进价×(1+利润率)        变形
    4.打折率=新售价/原售价    折扣率=1-打折率


解题思路
    若题干中未出现具体单位,可以利用赋值法求解
    在解题中,可以利用数字特性快速求解

2.4 几何问题

                                                                                                平面图形
图形周长公式面积公式
长方形(长+宽)*2长*宽
正方形边长*4边长*边长
三角形底*高 / 2
平行四边形底*高
梯形(上底+下底)*高 / 2
圆形π * 直径  =  2π*半径πr^2
扇形扇形半径×2+弧长

(lR)/2 (l为扇形弧长

=(1/2)θR²(θ为以弧度表示的圆心角)

=扇形度数/360  *  π r^2

棱形1/2 * 对角线 * 对角线 
                                                                                                立体几何
图形表面积公式体积公式
长方体(长*宽 + 长*高 + 宽*高)*2长*宽*高
正方体棱长*棱长*6棱长*棱长*棱长
圆柱体上底面积+下底面积+侧面积底面积*高
圆锥体πr²+πrl底面积*高/3
圆台体

πr²+πR²+πrl+πRl=π(r²+R²+rl+Rl)

r-上底半径  R-下底半径
h-高            l—母线

1/3 * π * h (R^2+R*r+r^2)
4π * r^2(4π * r^3)/3
                                                                                             角度
30°45°60°
sineq?%5Cfrac%7B1%7D%7B2%7Deq?%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7Deq?%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D
coseq?%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7Deq?%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7Deq?%5Cfrac%7B1%7D%7B2%7D
taneq?%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B3%7D1eq?%5Csqrt%7B3%7D
                                                                                        三角形常用知识点
两边之和大于第三边,两边之差小于第三边
三角形内角和为180°

勾股定理: a^2+b^2=c^2

常用勾股数(3、4、5;        6、8、10;        5、12、13)

解题思路
    1.规则图形,按照相对应的公式列方程或直接计算
    2.不规则图形,通过割、补、平移等方法转化成规则图形,再按照相对应的公式列方程或直接计算

2.5 排列组合及概率问题

完成一件事有多少种不同方法数的问题 

排列(A):与顺序有关
									   m
	定义:从n个元素种选出m个,排成一排A  ,从n开始往下数m个数
									   n
		  3				 5			   
	举例:A	=5x4x3		A  = 5x4x3x2x1全排列
          5	             5
	


组合(C):与顺序无关
									   m ,从n开始往下数m个数
	定义:从n个元素种选出m个,排成一排C  
									   n ,从m开始往下数m个数
									   
		  3	  5x4x3			 2	  5x4		     0	  n        1    n-1
	举例:C	= ——————=10		C  = ——————=10		C  = C  =1    C  = C    =n
          5	  1x2x3          5    1x2			 n	  n        n    n


——————————————————————————————————————————————————————————————————————————————

分类与分步:先分类再分步
			分类[加法]:国考、省考、选调、事业单位
			分步[乘法]:省考(报名-笔试-面试-政审)
			
——————————————————————————————————————————————————————————————————————————————

相邻与不相邻
	相邻:捆绑法
		先捆:先把必须相邻的元素捆绑起来,注意内部有顺序
		再排:将捆绑的元素看成一个元素,与其他元素进行后续排序
	
	不相邻:插空法
		先排:先将可以相邻的元素进行排序,排列后形成若干个空
		先插:将不相邻的元素插入形成的空位置种
		
——————————————————————————————————————————————————————————————————————————————

隔板法:把n个相同的元素分给m个不同对象时,要求每个对象至少分a个,用隔板法
	方法:每个对象至少分1个或几个时,先给每个对象分一个(即先分a-1个)
		  剩下的元素必须给每个主体至少再分一个才能满足要求
									  m-1
		  此时可以用非空公式:方法数 = C
									  n-1
										
——————————————————————————————————————————————————————————————————————————————

分堆法:A B C D分成2堆,每堆2个,有几种方法
     2  2
	C  C  = 6        错误
	 4  2
	 
	因为(重复了):AB CD、AC BD、AD BC、BC AD、BD AC、CD AB
	
	 2  2
	C  C    
	 4  2
	————————  = 3    正确
		2
	   A	
	    2
		 
——————————————————————————————————————————————————————————————————————————————

全错位排序
	D1=0、D2=1、D3=2、D4=9
	
	Dn=[Dn-1 + Dn-2](n-1)
	
——————————————————————————————————————————————————————————————————————————————

圆圈排列
				   n-1
	n个人围成一圈 A
				   n-1

——————————————————————————————————————————————————————————————————————————————

优限法:优先考虑有限制条件的方法

——————————————————————————————————————————————————————————————————————————————

对立法:正面思考太复杂(分的类比较多),对立面分类情况比较简单
       总的 - 对立的

2.6 溶液问题

基本公式
           溶质的质量
    浓度= ————————————×100%
           溶液的质量

                 溶质的质量
    溶液的质量= ————————————
                    浓度
    
    溶质的质量 = 溶液的质量*浓度


溶液混合问题——十字交叉法
    1.溶液混合问题,指两种不同浓度、不同质量的溶液混合在一起,形成新的浓度
      这是溶液问题中基本题型,常用解法为“十字交叉法”
        步骤为:
            ①写两个部分量的浓度;
            ②写整体浓度;
            ③十字交叉作差(大数–小数);
            ④写差值最简比;
            ⑤最简比对应两部分溶液的质量之比;

    2.十字相乘法使用时要注意几点:
            ①用来解决两者之间的比例关系问题
            ②得出的比例关系是基数的比例关系
            ③总均值放中央,对角线,大数减小数,结果放对角线上

    
     实际量    部分比值 总体比值  交叉做差(最简比)
        A         a                r-b
                   \               /
                    \             /                 A    r-b
                           r                 ◕‿◕  ―― =  ――
                    /             \                 B    a-r
                   /               \ 
        B         b                 a-r

        注:a>r>b
            1.三组计算关系:
                第二列和第三列交叉作差得到第四列(大数减小数)
                第一列和第四列的比值相等
                第二列的差等于第四列的和
            ⒉.最简比(实际量之比)为比值的分母之比

2.7 和定最值问题

基础知识
    如何来判断一个题目是否属于和定最值问题,我们需要按以下两个条件去排除:
        1.几个数的和一定
        2.问题是求其中某个量的最大值或者最小值


题型特点
    题干或问法中出现“最大或最小、最多或最少、至多或至少。”等,我们首先要考虑是和定值问题
    和定最值:多个数的和一定,求其中某个量的最大或最小值的问题


解题原则
    1.求某个量的最大值,让其余量尽可能小,从最小开始分析
    2.求某个量的最小值,让其余量尽可能大,从最大开始分析

2.8 容斥问题

基本原理:把所有重叠区域变成一层 

二者容斥

 917b35c7694ba689cd93949d3a894142.png

三者容斥 

3d09d5eb93ba45d2b1a6cc5a337b1dbb.png a3c44d11ccc946349458b9e50ec409ba.png

标准型:把所有重叠区域变成一层
                               加和         去重           补缺
    A∪B∪C - 都不满足    =    A+B+C - (A∩B + A∩C + B∩C) + A∩B∩C

        上面减去了三层,就没有了0层,所以要加1层
  

------------------------------------------------------------------------------

非标准型:把所有重叠区域变成一层
    A∪B∪C - 都不满足    =    A+B+C - 满足两项 - 满足三项x2

------------------------------------------------------------------------------

列方程组
    总数 - 都不满足 = 一个条件满足 + 两个条件满足 + 三个条件满足

------------------------------------------------------------------------------

其他方法:A B C是三个全圆形——所以加多了
    I=I0+I1+I2+I3

        一层:I1
        二层:I2
        三层:I3 

    A+B+C = I1+2I2+3I3

ad588ab8e7d94adfa118d4b6121598cd.png

容斥极值

ff1f0496ef2b23e077e58442adbb85e7.png

2.9 等比等差问题

等差数列
    1.基础知识
        等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数
            例如:1,3,5,7,9.....
        数列的第一项叫做首项a1表示,数列的最后一项叫做末项用an表示
        相邻两项的差值叫做共差d表示
        前n项和用Sn表示
    
    2.基本公式
        通项公式:an = a1+(n+1)d = am + (n-m)d
        求和公式:
                    (a1+an )*n           n(n-1)d
               Sn = —————————— = =na1 + —————————— = a中*n
                        2                   2
            
               Sn =中间项*n           (n为奇数)    中=(n+1)/2
                  =中间两项和/2 *n    (n为偶数)


等比数列
    通项公式:an = a1*q^(n-1) = am*q^(n-m)
    求和公式:Sn = a1*(1-q^n) / (1-q)     q≠1
              Sn = (a1-an*q )/(1-q)       q=1

---------------------------------------------------------------------------

周期循环
    解题关键:寻找最小循环周期
        (1)找周期:找准周期的起点和终点,确定总数
        (2) 算余数:总数÷每个周期的个数=周期数量......余数(n)
        (3)做等价:余数n就等价于该周期的第n项(余几数几)


整除
    1.核心
        通过题干中所给的信息,判断结果应具备的整除特性,从而排除错误选项
    2.应用环境
        题干文字描述中出现“整除、每、平均、倍数"等字眼时
        能用利用整除解题题干中出现分数、百分数、比例等数据时能够利用整除解题

2.10 统筹问题

排队取水
    例: 有7个人打水,1个水笼头,公别时 11  9 7 5 4 3 1 分钟,则怎样打水用时最短?
            ll*1十 9*2 十 7*3十 5*4十4x5十 3x6 十l×7
        若2个水龙头
            11*1 + 9*1 + 7*2 + 5*2 + 4*3 + 3*3 + 1*4 


货物集中:判断该点两端货物的重量,将轻的一端搬到重的一端

2.11 方阵问题

1.方阵总人数∶N^2    (设方阵每行每列人数为N)

2.相邻两圈方阵人数差为8人

3.若方阵去掉a行b列,减少的人教:aN + bN - ab    (从0开始数)

4.方阵最外层阶总人数:4(N-1)

2.12 钟表问题

钟表12格、分针60小格

时针每小时转30。、分针每小时转12个360。
时针一夜昼夜转两圈720。,一小时转1/12圈30。;分针一昼夜转24圈,一小时转一圈

时针的转速是分针的1/12,分针每小时可以追及11/12

时针与分针一昼夜:重合22次、垂直44次、180。22次


追及公式:T = T0 + 1/11 *T0
          T为追及时间、T0为静态时间

2.13 牛吃草问题

类似于行程问题中的追及问题 

原有草量 = 牛吃的的草量        -    新长的草量
        = 牛吃草的速度*时间    -    草生长的速度*时间
        = (牛吃草的速度 - 草生长的速度)* 时间

        = (V牛 - V草)* 时间

2.14 年龄问题

关键是年龄差不变
    几年后年龄 = 大小年龄差/倍数差 - 小年龄
    几年前年龄 = 小年龄 - 大小年龄差/倍数差

2.15 植树问题

直线植树: 距离/间隔 +1 = 棵数   

四周植树: 距离/间隔 = 棵数   

楼间植树
    单边植树: 距离/间隔 -1=棵数   

    双边植树:(距离/间隔 -1)*2=棵数

2.16 剪绳问题

对折N次,从第M刀剪,被剪成:(2^N * M + 1)段

2.17 星期日问题

平年:不能被4整除、365天、2月28天

闰年:366天、2月29天
    普通闰年‌:如果一个年份能被4整除且不能被100整除,那么这个年份就是闰年
        例如,2020年是闰年,因为2020能被4整除且不能被100整除

‌    世纪闰年‌:如果一个年份是整百年(如1900年、2000年),那么它必须是400的倍数才是闰年
        例如,2000年是闰年,因为2000能被400整除;而1900年不是闰年,因为1900不能被400整除


大月 31天:1、3、5、7、8、10、12
小月 30天:2、4、6、9、11

注意:星期每7天一循环;“隔N天”指的是“每(N+1)天”

2.18 页码问题

X千里找几,公式是1000+X00*3

X百里找几,就是100+X0*2:请注意,要找的数一定要小于X,如果大于X就不要加1000或者100一类的了
     7000页中有多少3就是1000+700*3=3100(个)

     20000页中有多少6就是2000*4=8000(个)

     3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了

2.19 和定最值问题

若干个数求和,和为定值,求其中某个数的最大值或最小值:写出对应的位置进行分析
    最大值:其他最小

    最大数的最小值:先求平均量

    最小数的最大值:其他最小

2.20 最不利问题

至少...能够保证...

   解题方法:最不利方法数+1

2.21 鸡兔同笼问题

算法思维:就是假设全鸡或者全兔   


    全鸡
            总脚数 - 全鸡头数*2 = 剩余的脚数
            剩余脚数/差值(4-2)= 兔数


    全兔
            全兔头数*4 - 总脚  = 剩余的脚数
            剩余脚数/差值(4-2)= 鸡数
 
该问题大约在1500年前的《孙子算经》中就有记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
解释:鸡兔一个笼子35个头,一共有94只脚,问鸡和兔有多少?
 
传统方法
	1.全鸡:35只	兔:0只
	2.全兔:35只	鸡:0只
	3.  鸡x		兔35-x	(兔x		鸡35-x)
	x*2+(35-x)*4=94
	x=23		35-23=12
 
《孙子算经》方法:脚多的
	脚数/2-头数=兔数			头数-兔数=鸡数
	94/2-35=12			35-12=23
------------------------------------------------------------------------------------
有鸡兔共20只,脚44只,鸡兔各几只?
	44/2-20=2			20-2=18




脚数/2 - 头数(就是鸡) = 兔数        因为鸡的脚是2,除2就是头数    兔不行,因为不可能是两个脚

2.22 空瓶换水问题

拆分瓶和水:空瓶 和 水

    3空瓶 = 1瓶水
    ——>   = 1空瓶 + 1份水
    2空瓶 =  1份水      

2.23 概率问题

1.给情况求概率

                满足要求的情况数
        概率P = ————————————————    (不要硬算,上下约分巧算)
                   总的情况数
				   
——————————————————————————————————————————————————————————————————————————————

2.给概率求概率情况
	分类:P=P1+P2...+Pn		(例:不下雨的概率=晴天概率 + 阴天的概率)

	分步:P=P1xP2x...xPn	 例:连续两次命中的概率=第一次命中的概率 x 第二次命中的概率)

——————————————————————————————————————————————————————————————————————————————

3.多次重复实验
				  k    k       n-k
	伯努利公式 P=C     P     (1-P)
                  n
				                          3    3        2
	例:打靶中的概率为60%,求5中3的概率P=C  0.6  (1-0.6)
	                                      5

五:资料分析

1.资料分析可以用尺子找出:条形图大小、最值、排第几、高度比例、角度比重

2.最后判断题目时间可能不够:可以看简单选项对错进行排除

3.先看问题,勾出关键字:不然容易找错

4.题干有约字:选项一定不是整数

5.选项全由“文字”组成:多半选C

6.主要由“数字”构成的选项:多半选B

7.最后一道综合分析题:多半C D,优先看D

8.选项是几个国家:选项排除自己家
做题5大步骤
    1.看时间段:看是同比还是环比

    2.看求什么:现期、基期、增长量、增长率、平均量、比重、倍数

    3.找数:结构化阅读,理解核心概念

    4.列式:掌握核心公式

    5.计算:尽量估算,不动笔


四大核心概念:平均、增长量、增长率、比重


类型:文字类、表格类、柱状图类、饼状图类

求解量有哪些

现期基期增长量增长率
普通现期量基期量增长量增长率
平均数现期平均数基期平均数平均数增长量/变化平均数增长率(独)
比重

现期比重

隔级比重

基期比重两期比重差/变化

拉动增长率

增长贡献率

间隔

间隔基期量

间隔增长率
混合混合增长率
年均年均增长率

*思路扩展*

合理运用下面的方法:原理是同步放缩 
    现期=基期+增长量 

            基期        增长量        现期   
    假

    真

---------------------------------------------------------------------------------------

合理运用比例关系
    10.6占64.3%
    拿如果是11呢?    估计64.5%

---------------------------------------------------------------------------------------

基期 + 增长量 = 现期

基期*(1+增长率)=现期

=>基期*(1+增长率) + 增长量*(1+增长率) = 现期*(1+增长率)
  现期             +  增量              = 下一年

---------------------------------------------------------------------------------------

增长量 = 基期*增长率
       = 现期/(1+r) *  r
       = 现期 * r

    当|r| < 5%时 1+r 可以忽略掉

---------------------------------------------------------------------------------------

当r增长率比大小时               现期=基期+增长量  比如  1=2/3  +  1/3
    第一种方法:看r
        r = 增长量/基期         1/3  

    第二种方法:看倍速        
        r=倍数-1

    第三种方法:看 增长量/现期  1/2
        因为 现期=基期+增长量
        所以 当增量提升,增量/基期  和  增量/现期也会提升

---------------------------------------------------------------------------------------

遇见求和平均数:出现几年的,很多可以看图看出来(画线)

---------------------------------------------------------------------------------------

两期倍数=现期/基期=(1+a)/(1+b)=1+r
       现期=A/B
       基期=A/B * (1+b)/(1+a)

r=两期倍数-1
  =(1+a)/(1+b) - 1
  =(a-b)/(1+b)

基期倍数=A/B * [(1+b)/(1+a)]

到这里:可以结合选项差值(倍数-1=r) 得出答案

---------------------------------------------------------------------------------------

两数相乘=r1 + r2 + r1*r2 +1        

        间隔增长率公式是:r = r1 + r2 + r1*r2

        长 x 宽 = 面积
        1.1  1.2  1.32

        A    B    AB
        r1   r2   (1+r1)(1+r2) = 1 + r2 + r1 + r1*r2=倍数

        r=倍数- 1
        倍速= 1+r =(r1 + r2 + r1*r2) +1  


1.22x1.57 = 1.9154
	= (0.22 + 0.57 + 0.22*0.57) + 1
	约等于1.9


扩展:适用于一切乘除法
    平均数=总/类
    单价  =总/个


在求比值/乘积 增长率问题上:可以转化为隔年增长率的算法
        A    B    AB
        r1   r2   (1+r1)(1+r2) = 1 + r2 + r1 + r1*r2

---------------------------------------------------------------------------------------

混合对象:混合居中,靠近两大(靠近分母)
    增长率(基期量):基期量相加,增长率混合,混合后增长率靠近基期量大的

    平均数(份数):份数相加,判决书混合,混合平均数靠近份数大的

    占比(总量):总量相加,占比混合,混后占比靠近总量大的



混合增长率 R=A+B时	得出 A/B = (r-b)/(a-r)

                    B          A
            |_______________|______|
            a              	r      b


    顺差 = 出 - 进
           (出 - 进)+ 进 = 出

                    B           A
            |_______________|______|
         (出 - 进)        出     进 

---------------------------------------------------------------------------------------

1.基本单位

现期/本期(时间靠前 今天)、基期/前期(时间靠后 前天):时间

X:增长量

a代表分子增长率    b代表分母增长率 

A:部分的现期量     B:总体的现期量 

2.基本公式*

r=增长量/基期量    增长量=现期量–基期量    
                                            r=现期量/基期量 - 1
                                            r=增长量/(现期量-增长量)=增长量/现期量 - 1

r + 1 = 倍数 = 现期/基期

---------------------------------------------------------------------------------------

现期量 = 基期量 * (1+r)
基期量 = 现期量 / (1+r)


现期和差 = A ± B
基期和差 = A/(1+a) ± B/(1+b)
    基期部分:A/(1+a)
    基期总体:B/(1+b)
基期差 = (现期a-增量a)-(现期b-增量b)
       =(现期a-现期b)-(增量a-增量b)

---------------------------------------------------------------------------------------

比值 变化量/增长量/差值/增量 = A/B * [(a-b)/(1+a)]       如果要比较大小:可以直接看    a-b
    现期比值-基期比值
        1.比重的变化量:部分/整体
        2.平均值的变化量:总量/份数
            a>b    比值上升
            a<b    比值下降
            a=b    比值不变
    --------------------------------------------
    现期比值:A/B    
    基期比值=A/B * [(1+b)/(1+a)]
        1.基期比重:部分/整体
        2.基期平均值:总量/份数
        3.基期倍数

---------------------------------------------------------------------------------------

比值/乘积 平均值增长率/变化率/增率(平均量独有的) = (a-b)/(1+b)
    r=现期量/基期量 - 1
    现期比值:A/B    
    基期比值=A/B * [(1+b)/(1+a)]
    
    r=增长量/基期量 
    比值 变化量/增长量/差值/增量 = A/B * [(a-b)/(1+a)]
    基期比值=A/B * [(1+b)/(1+a)]

3.常用公式

3.1 现期、基期 

现期/本期(时间靠前 今天)、基期/前期(时间靠后 前天):时间
    基期和差 = A/(1+a) ± B/(1+b)
    基期比值:比重|平均数|倍数 = A/(1+a) / [B/(1+b)] = A/B * [(1+b)/(1+a)]

------------------------------------------------------------------------------

现期量、基期量:数量
r=增长量/基期量    增长量=现期量–基期量    
                                            r=现期量/基期量 - 1
                                            r=增长量/(现期量-增长量)=增长量/现期量 - 1

------------------------------------------------------------------------------

    现期量 = 基期量 + 增长量
           = 基期量 * (1+r)
             {推演:增长量=基期量*r}

    现期差 = 现期a - 现期b
    ---------------------------------------------------------------

    基期量 = 现期量 - 增长量
           = 现期量 / (1+r)
             {推演:由上面演化来  现期量= 基期量 * (1+r)}
           = 增长量/r

    基期差 = (现期a-增量a)-(现期b-增量b)
           =(现期a-现期b)-(增量a-增量b)

     ---------------------------------------------------------------

    隔年基期量=现期量/(1+隔年增长率)

     ---------------------------------------------------------------

3.2 增长量

增加、增长
------------------------------------------------------------------------------

    增长量 = 现期量 - 基期量

    增长量 = r*  基期量

    增长量 = r*  现期量/(1+r)         
           =现期量/(1/r +1)

------------------------------------------------------------------------------

    隔年增长量=隔年增长率r * 现期量/(1+隔年增长率r)


    年均增长量=(末期量-初期量)/年份差

3.3 增长率r

增长率、变化率、增幅、增速、数量一样/持平(增长率为0) 、增加减少百分数
------------------------------------------------------------------------------

    r + 1 = 倍数 = 现期/基期
        现期比基期增长55%,现在是基期的1.55倍

------------------------------------------------------------------------------

    r=增长量/基期量

    r=(现期量–基期量)/基期量
     =现期量/基期量 - 1                       
     =倍速 - 1

    r=增长量/(现期量-增长量)

------------------------------------------------------------------------------

    间隔增长率公式是:r = r1 + r2 + r1*r2
            已知2022年的量为A,2022年的同比增长率为r1,2021年的同比增长率为r2,求2020年的量?
            2022:A
            2021:A/(1+r1)
            2020:A/(1+r1)  /  (1+r2)  = A / (1+r1)(1+r2)=A / (1 + r1+r2+r1×r2)


    底层逻辑:倍数
        长 x 宽 = 面积
        1.1  1.2  1.32

        A    B    AB
        r1   r2   (1+r1)(1+r2) = 1 + r2 + r1 + r1*r2

        倍数 = 1 + r2 + r1 + r1*r2
        r=倍数- 1

        所以:r = r1 + r2 + r1*r2

------------------------------------------------------------------------------

    年均增长率 = (1+R)^n = 现期/基期 = 1+nR
        注意 R != r/n


                           ______________
    年均增长率 = 年份差 ^  V(现期/基期)     - 1

                       (现期/基期)  -1
               < ——————————————————————————————         如果要比较大小:可以直接看    现期/基期   
                            年份差

------------------------------------------------------------------------------

    拉动增长率 = 部分增量/整体基期   *   100%

    增长贡献率 = 部分增量/整体增量   *   100%

        所有个体增量之和 = 总增长量
        所有拉率之和     = 总增长率
        所有贡献率之和   = 1

------------------------------------------------------------------------------
    
    混合增长率 R=A+B时
        举例:某个班3人考了80分,2人考了90分,求他们的平均分
            3*80 + 2*90          A*a + B*b
            ———————————— = r  = ————————————
                 3+2                A+B

            A*a + B*b = r(A+B)=r*A + r*B
            A*a - r*A = r*B - B*b
            A(a-r)    = B(r-b)

        得出 A/B = (r-b)/(a-r)

        线段法、十字交叉法、混合增长率:底层逻辑一样

                    3           2
                    B           A
            |_______________|______|
            a               r      b
            80              86     90

------------------------------------------------------------------------------
        

3.4 平均量

平均量、平均值、平均分、亩产、人均、户均、单价、每...
    如何找分母:均前每后 做分母
------------------------------------------------------------------------------
    现期平均数=总量/份数
        现期平均数=(a1+a2+a3+...+an)/n

        现期平均数=现期总量/现期总份数=A/B

    --------------------------------------------------------------------------

    基期平均数 = A/B * (1+b)/(1+a)
               = [总量/份数] x [(1+份率r)/(1+总率r)]

        基期平均数=(现期总量/现期总分数)*(1+总份数增长率r / 1+总量增长率r)
            基期总量=现期总量/(1+总量增长率r)
            基期总份数=现期总份数/(1+总份数增长率r)

    --------------------------------------------------------------------------

    平均数比值 增长量/差值/变化量/增量 = A/B * [(a-b)/(1+a)]
        平均数增长量=现期平均 - 基期平均
        现期平均数:A/B 
        基期平均数:A/B * (1+b)/(1+a)
    
    --------------------------------------------------------------------------独有
    平均/人均....比        后面除以前面

    比值 平均值增长率/变化率/增率(平均量独有的) = (a-b)/(1+b)
        r=现期量/基期量 - 1
        现期比值:A/B    
        基期比值=A/B * [(1+b)/(1+a)]
    
        r=增长量/基期量 
        比值 变化量/增长量/差值/增量 = A/B * [(a-b)/(1+a)]
        基期比值=A/B * [(1+b)/(1+a)]

调和平均数

         ——     a1*a2
核心公式:a =————————————
               a1 + a2


                  ——     2a1*a2
减半调和平均数公式:a =————————————
                        a1 + a2

46eab36ac4cd98b6e0034218f6f5ef2b.png

3.5 比重

占、比值、比重
------------------------------------------------------------------------------
    现期比重 = 部分量/整体量 = A/B

    --------------------------------------------------------------------------

    基期比重 = A/B × [(1+b)/(1+a)]
             = [部分/整体] x [(1+整率r)/(1+部率r)]

        上年的比重=基期部分/基期总体                    
        基期部分:A/(1+a)
        基期总体:B/(1+b)
        {推演:倒过来、再交换}    


    基期比重 = 现期比重 - 两期比重差

    --------------------------------------------------------------------------

    比重比值 差值/增长量/变化量/增量 = A/B * [(a-b)/(1+a)]

        比重差值=现期比重 - 基期比重                   
        现期比重:A/B 
        基期比重:A/B × [(1+b)/(1+a)]
        {推演:踢出去、统一分母、再相减}


    可以得出的结论
        比重上升:a>b
        比重下降:a<b

        如果a>0:增长率>比重差
    ---------------------------------------------------------------------------

               大      中     大
    隔级比重 = ———— * ———— = ————
               中      小     小

3.6 倍数

几倍、多几倍
------------------------------------------------------------------------------
    倍数的3种问法
        A是B的几倍:A/B
        A比B增长(多 增长)几倍:(A-B)/B = A/B -1
        A超过B的N倍:A > B×N

    --------------------------------------------------------------------------

        现期倍数 = A/B
        基期倍数 = A/(1+a)  /  B/(1+b)  =  A/B * (1+b)/(1+a)
    
    --------------------------------------------------------------------------

        翻n番 = 2^n倍

    --------------------------------------------------------------------------

    增长率+1=倍数=多几倍+1
            增长率 r = (B - A) / A × 100%
            倍数   m = B / A
            多几倍 n = (B - A) / A

            增长率<100%的时候        增长百分之多少
                  >1 2 3...          增长几倍

4.公式表

3bca4b65ec18cea315c25d8fb176e105.png

995900308116d39c1ae296648e558811.png

ab6ebd70c75f7ce6975bf6639346a62c.png

05516ecaff9e6830c1647754b75ece9a.png

41520a8dfd80df918b2f9c2e100e2632.png

5.区分

5.1 环比同比 

环比:与上一时期比  (2022年3月 2022年2月、上半年 下半年)月份变化
      与上一个最小的时间单位相比,向上循环一个周期


同比:去年同一时期比(2023年3月 2022年3月)年份变化,可能是挨着月份相互比较
      与上年同期相比

5.2 顺差逆差

​顺差(净出口额、出超)
    出口商品 > 进口商品


逆差(净进口额、入超)
    出口商品 < 进口商品

5.3 成数与翻番

成数:几成就相当于十分之几,也就是百分之几十

翻番:翻N番,变为原来的2^N倍

5.4 倍数与比值 

倍数:用来表示二者的相对关系;
比值:用来表示二者之间的比例关系(A与B的比值,即A:B = A/B)


识别:时间+倍数


公式
    1.现期倍数
        A是B的几倍:A/B

        A是B增长(多)几倍:(A-B)/B = A/B - 1

        增长率+1=倍数=多几倍+1
            增长率 r = (B - A) / A × 100%
            倍数 m = B / A
            多几倍 n = (B - A) / A

    2.基期倍数=A/B*[(1+b)/(1+a)]    (先截位直除A/B,再看(1+b)/(1+a)与1的关系)



倍数的3种问法
    A是B的几倍:A/B

    A比B增长(多)几倍:(A-B)/B=A/B-1

    A超过B的N倍→A>B×N

5.5 百分数与百分点 

10%————>15%
    比例或百分比的表达方式                     增速:5%
    描述百分比变化的增量单位                   5个百分点

5.6 增量 与 增速 与 增幅降幅 与 变动幅度

100——————>120

增量 = 新值 - 旧值
     = 120 - 100
     = 20

增速 = (新值 - 旧值) / 旧值 × 100%
     = (120 - 100) / 100 × 100%
     = 20 / 100 × 100%
     = 20%

---------------------------------------------------------------------------------------

增量    增速    增幅    降幅    变动幅度
20      20%     20%     20%     20%
        -20%                    20%

6.速算技巧 

6.1 精算法/同步放缩法

原理是一样的 

精算
    3位数/4位数:减去的两位数和前两位数的关系 
        减/加 的数 = (倍数a * 前2位) + (倍数b * 前1位) 

                                        这里的倍数b:可能是负数、可能是分数

精估算
    也可以减去一个同样的倍数:比如1.1倍数
        8352        8352-82
        ————        ————————
        7478        7478-78

例题  

精算 

361            361-108           108=3*36
————           ——————
139            139-39            39=3*13



543            543-103           103=2*54-1*5
————            ————
123            123-23            23=2*12-1*1



254            254+83            83=3*25+4*2
———— * 152    ————————* 152    
115            115+37            37=3*11+4*1

a8f611c33b52514758eb98d885dd26eb.png

6.2 截位直除法 

截位直除法

一个数×1.5=本身+本身的一半

一个数×1.1=错位相加
一个数x0.9=错位相减

除前看选项;大则截两位,小则截三位;

不要一直算下去,边除边看好习惯

        截位

截几位,就是四舍五入保留几位

左边第一个不是0的数字开始截取

        截谁

(看除了几次)

一步除法【分母】:建议只截分母

A/B    (A+B)/C    A/(B+C)


多步直除【分子分母】:建议上下都截(截后再约分)     

        可对分子分母进行+1或-1的处理,方便约分 

A/B * C/D    A/B/C 

   

      截几位

(四舍五入)

选项差距大:截两位

        首位不同

                12、22、32
        首位相同,次位差>首位              

                 53  59         9-3=6

选项差距小:截三位
        首位相同且次位差<=首位             

                 53   54         4-1=3

        特别:当接近的时候,看是否小于10%(小于就是差距小 否则差距大)

                 19   20看着是属于差距大的,但是是属于差距小的

                            20-19=1     1/19<10%

                 18   20

                            20-18=2     2/18>10%

注:若选项之间存在约10倍的关系时,需要看小数点、位数、单位,要注意判断数量级(几位数)

 小技巧:量级不同时将分母化成1点几算更好比较

-----------------------------------------------------------------------------------------------------------------

12345/6789

A.1.82    B.18.2    C.2.34    D.23.4


A和B 与 C和D 之间存在10倍的量级关系

此时可以直接看成:12345/6800
    先通过商1排除CD
    再结合量级确定小数点的位置锁定A

[234.4/(1+14.06%)] / [9191.6/(1+21.46%)]

差距大
23/11              / 92/12
=23/11 * 12/92
=1/11  * 12/4
=3/11

6.3 胜率法

577        592        592-577=15
————       ————       ———————————— 
1003       1059       1056-1003=53


58%    >              35%

6.4 倒除法

如果  分子/分母  不好算:可以  分母/分子
      大         变            小
      小         变            大

6.5 尾数法

尾数的运算可以比较选项中对应的尾数

6.6 化数 

6.6.1 百分数化为——>分数 
百化分:百分数化分数 
    1.常见的分数化百分数
    2.三步速记法
        ①“7 ~12”,加和(整数部分+分母)为20:12.5%=1/8    11.1%≈1/9    9.1%≈1/11    8.3%≈1/12    7.7%≈1/13
        ②(16.6)和(14、7)互换的两对:16.7%≈1/6    6.25%=1/16    14.3%≈1/7    7.1%≈1/14
        ③(17、18、19): 5.963%≈1/17    5.6%≈1/18    5.3%≈1/19
    3.百化分方法(增长率)
        放缩法
            1.43%: 14.3%≈1/7,则1.43%≈1/70
            67%: 6.7%≈1/15,67%≈1/1.5
            1.9%: 1.9%≈2%=1/50
        取中法
            18.5%:介于16.7%≈1/6和20%=1/5之间,则18.5%≈1/5.5,n=5.5
            15.4%:介于14.3%≈1/7和16.7%≈1/6之间,则15.4%看成1/6.5,n=6.5
        公式法:N=100/百分号前的数字(保留小数点后一位)
            44%:44/100=1/N,N=100/44≈2.2,则44%看成1/2.2
            37%:N=100/37≈2.7,则37%看成1/2.7

0e6da1c0eb5529e8e7a322b4c3cadba6.png

79c0cde3b27588fe10c080fd4faca4b4.png

6.6.2 分数化为——>小数 
1/2——>0.5        1/3=0.333      1/4——>0.25     1/5——>0.2

1/6——>0.167      1/7——>0.143    1/8——>0.125    1/9——>0.111

1/15——>0.67
6.6.3 平方数

2a905899a64b3bb2abed0d6a8a80cdf3.png

ecdfe19103894ce0a0b5acfc243771b6.jpeg

6.6.4 立方数

 7eb7db48141d995617026a5d429dc166.png

6.6.5 变化率 变化幅度 

cf34c7841ad7105b6879e277259524a9.png

6.7 高位叠加法

28.3    37.8    64.4    27.7

十位:2+3+6+2=13
个位:8+7+4+7=26
十分位:3+8+4+7=22

    1 3
      2 6
        2 2
---------------
    1 5 8.2

6.8 线段法

 线段法、十字交叉法、混合增长率:底层逻辑一样

混合思想
            8           2
    |_______________|______|
    30             38      40
    男                     女


    特点:居中不正中、偏向数大的部分、距离与量成反比

    举例:求男女人数比
        男30分    女40分    全部38分 
        2人数比   8人数比

------------------------------------------------------------------------------

线段法的使用条件
    1.线段上方:C=A+B
    2.上下相乘有意义
    3.A*a + B*b = C*c

------------------------------------------------------------------------------

        A         a         r-b
                   \       /
                    \     /                A    r-b
                       r            ◕‿◕  ―― =  ――
                     /   \                 B    a-r
                    /     \ 
        B          b       a-r


            混合增长率 R=A+B时	得出 A/B = (r-b)/(a-r)

                    B          A
            |_______________|______|
            a              	r      b
           

6.9 拆分法

第一种:把一个分数拆分成    整数+分数

    1577        144         5573        3
    ———— = 1 + ————         ———— = 1 - ————
    1433        1433        5576       5576

------------------------------------------------------------------------------

第二种:把百分数拆分成    熟悉好算的百分数
    
    8800*57% = 8800*50% + 8800*5% + 8800*2%      
             = 4400     + 440     + 176
             = 5016 

------------------------------------------------------------------------------

第三种:把百分数拆分成     分数+百分数

    35% = 1/3 + 2%
    47% = 1/2 - 3%

------------------------------------------------------------------------------

第四种:合理运用记忆数

    6217*0.83 = 6217 * (1-0.17)
              = 6217 - 6217/6

------------------------------------------------------------------------------

6.10 假设分配法

分配原理:B = A + x 
           = A + Ar
------------------------------------------------------------------------------

r>0    
    举例:B=257    R=12%

                        257
                   /            \
                 /               \
           200                        200*12%=24
                 257-(200+24)=33
                 /               \
                /                 \
               30                  30*12%=>3
        -----------------------------------------
        基期=200+30=230            增长量=24+3=27
        -----------------------------------------

------------------------------------------------------------------------------

r<0    
    举例:B=831    R=-10%

                        831
                   /            \
                 /               \
           900                        900*-10%=-90
                 831-(900-90)=21                                注意:这里如果分多了就是负数
                 /               \
                /                 \
               23                  23*-10%=>-2
        -----------------------------------------
        基期=900+23=923            增长量=-90-2=-92
        -----------------------------------------

另外的思路

现期13558,增长率7.8,求现期
    13000 * 7.8% = 1000

    基期=13000+(13558-13000-1000)=12558


其原理为  x增长量
     基期*(1+r)                                            = 现期
    (13000+x)*1.078 = 13000*1.078              +  x*1.078  = 13558
                      = 13000  +  13000*0.078    +  x*1.078  = 13558
                                                    可忽略
                               基期  +   增长量               = 现期 
    增长量 = 现期 - 基期

7.坑位

江苏卷子:初期量要向前推一年
    十二五规划,指2011-2015年

    2011年初:是2010年末

    如果是2015-2018:但是2014有数据,那么也要把2014年算上

    如果指定谁为基期就不管

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘鑫磊up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值