CF1954D Colored Balls 题解

文章介绍了一种使用动态规划方法计算小球组合中最小分组数的算法,涉及数组操作和代码实现。
摘要由CSDN通过智能技术生成

原题链接

思路简介

对于一组可能的小球组合,设数量和为 s u m sum sum,最大值为 a a a,那么能分成的最小组数即为 min ⁡ ( a , ⌈ s u m 2 ⌉ ) \min(a, \lceil \frac{sum}{2}\rceil) min(a,2sum⌉)。观察到 s u m sum sum 的值不会大于 5000 5000 5000,我们可以用一个 c n t cnt cnt 数组记录每一种数量和的出现次数,将数量从小到大排序后一边通过遍历 c n t cnt cnt 数组分情况来统计答案,一边更新 c n t cnt cnt 数组即可。

代码

#include <bits/stdc++.h>
#define read std::cin
#define write std::cout
typedef long long ll;

const int N = 5005;
const int mod = 998244353;

int n, a[N];
ll dp[N], res;

int main() {
    std::ios::sync_with_stdio(false);
    read.tie(0), write.tie(0);
    read >> n;
    for (int i = 1; i <= n; ++i) read >> a[i];
    std::sort(a + 1, a + 1 + n);
    dp[0] = 1ll; // 0 的出现次数为 1
    for (int i = 1; i <= n; ++i) {
        for (int j = 5000; j >= a[i] + 1; --j) {
            // 每一组对答案的贡献为 (j + a[i] + 1) / 2
            res = (res + (j + a[i] + 1) / 2 * dp[j] % mod) % mod;
            if (j + a[i] <= 5000) dp[j + a[i]] = (dp[j + a[i]] + dp[j]) % mod; // 更新 cnt 数组
        }
        for (int j = a[i]; j >= 0; --j) {
            // 每一组对答案的贡献为 a[i]
            res = (res + dp[j] * a[i] % mod) % mod;
            if (j + a[i] <= 5000) dp[j + a[i]] = (dp[j + a[i]] + dp[j]) % mod;
        }
    }
    write << res;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值