思路简介
对于一组可能的小球组合,设数量和为 s u m sum sum,最大值为 a a a,那么能分成的最小组数即为 min ( a , ⌈ s u m 2 ⌉ ) \min(a, \lceil \frac{sum}{2}\rceil) min(a,⌈2sum⌉)。观察到 s u m sum sum 的值不会大于 5000 5000 5000,我们可以用一个 c n t cnt cnt 数组记录每一种数量和的出现次数,将数量从小到大排序后一边通过遍历 c n t cnt cnt 数组分情况来统计答案,一边更新 c n t cnt cnt 数组即可。
代码
#include <bits/stdc++.h>
#define read std::cin
#define write std::cout
typedef long long ll;
const int N = 5005;
const int mod = 998244353;
int n, a[N];
ll dp[N], res;
int main() {
std::ios::sync_with_stdio(false);
read.tie(0), write.tie(0);
read >> n;
for (int i = 1; i <= n; ++i) read >> a[i];
std::sort(a + 1, a + 1 + n);
dp[0] = 1ll; // 0 的出现次数为 1
for (int i = 1; i <= n; ++i) {
for (int j = 5000; j >= a[i] + 1; --j) {
// 每一组对答案的贡献为 (j + a[i] + 1) / 2
res = (res + (j + a[i] + 1) / 2 * dp[j] % mod) % mod;
if (j + a[i] <= 5000) dp[j + a[i]] = (dp[j + a[i]] + dp[j]) % mod; // 更新 cnt 数组
}
for (int j = a[i]; j >= 0; --j) {
// 每一组对答案的贡献为 a[i]
res = (res + dp[j] * a[i] % mod) % mod;
if (j + a[i] <= 5000) dp[j + a[i]] = (dp[j + a[i]] + dp[j]) % mod;
}
}
write << res;
return 0;
}