树的三种遍历方式的遍历顺序:
先序遍历:根、左子树、右子树(特点:第一个元素为根)
中序遍历:左子树、根、右子树(特点:根的两边分别为左子树和右子树)
后序遍历:左子树、右子树、根(特点:最后一个元素为根)
有如下图的二叉树:
其先序、中序、后序遍历分别为:DBACEGF、ABCDEFG、ACBFGED。
1、已知先序和中序求后序
先序遍历的第一个字符为根,因此只需在中序遍历中找到它,就可以把根节点的左子树和右子树分开,就可以知道左子树的字符个数和右子树的字符个数,然后可以确定先序遍历中哪部分是左子树,哪部分是右子树,之后递归先序遍历的序列,直到结束。
如上面的例子:先序遍历的第一个字符是D,则根节点为D,从中序遍历中可以找到D的位置,左边的ABC即为左子树的字符,右边的EFG即为右子树的字符,如果开始递归函数为:build(“DBACEGF”),则找到根的位置后,可以分为递归左子树的先序遍历和递归右子树的先序遍历:build(“BAC”)和build(“EFG”),其对应的中序遍历为:ABC和EFG。然后继续进行以上步骤,直到找完先序序列。每找到根就可以直接输出或保存到数组中,需要注意的是递归的时候不要把根包含在内。
代码如下(已知先序和中序求后序):
#include<stdio.h>
#include<cstring>
char a[30],b[30];
void fun(int r1, int l1, int r2, int l2)
{{//四个参数分别为:先序遍历的起始位置和结束位置和中序遍历的起始位置和结束位置
int i;
if(r1>l1))//如果已经到达叶子,返回
return;
for(i=r2;b[i]!=a[r1];++i);//找到根节点在中序遍历中的位置
fun(r1+1, l1-l2+i,r2,i-1);//递归求左子树的后序遍历,r1+1是指把根去掉之后的位置
fun(l1-l2+i+1,l1,i+1,l2);//递归求右子树的后序遍历
putchar(a[r1]);//在递归结束后输出根
}
int main(void)
{
int i;
while(scanf("%s%s",a,b)!=EOF)
{
int l=strlen(a);
fun(0,l-1,0,l-1);
puts("");
}
return 0;
}
2、已知中序和后序求先序
后序序列的特点是最后一个是根,道理与已知先序和中序求后序一样,同样是递归,只是需要改变几个参数。附上代码和注释。
#include<stdio.h>
#include<cstring>
char a[30],b[30];
void fun(int r1, int l1, int r2, int l2)
{
int i;
if(r1>l1)
return;
putchar(a[l1]);//由于是求先序遍历,所以要先输出根节点
for(i=r2;b[i]!=a[l1];++i);//对应的,后序序列的最后一个为根,所以根为a[l1]
fun(r1,l1-l2+i-1,r2,i-1);//递归求左子树的先序遍历
fun(l1-l2+i,l1-1,i+1,l2);//递归求右子树的先序遍历,l1-1为去掉根后的位置
}
int main(void)
{
int i;
while(scanf("%s%s",a,b)!=EOF)
{//先输入后序,在输入中序
int l=strlen(a);
fun(0,l-1,0,l-1);
puts("");
}
return 0;
}