01背包问题与分数背包问题 C++实现

01背包问题与分数背包问题 C++实现

贪心对动态规划

两个背包问题都具有最优子结构性质。对01背包问题,考虑重量不超过 W W W而价值最高的了包装方案。如果我们将商品 j j j从此方案中删除,则剩余商品必须是重量不超过 W − ω j W-\omega_j Wωj的价值最高档案。

虽然两个问题类似,但我们用贪心策略可以求解分数背包问题,而不能求解01背包问题(需要用动态规划方法求解),我们首先计算每个商品的每磅价值 v i / ω i v_i/\omega_i vi/ωi。遵循贪心策略,小偷尽量多地拿走每磅价值最高的商品。如果商品已被全部拿走而背包尚未满,他继续尽量多地拿走每磅价值第二高的商品,以此类推,直到重量达到上限 W W W。因此,通过将商品按照每磅价值排序,贪心算法的运行时间为 O ( n l g n ) O(nlgn) O(nlgn)

源代码

01背包:

#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>

using namespace std;

//Data.
vector<int> temp_VecP = { 0,17,2,3,4,5,6 }, temp_VecW = { 0,6,5,4,3,2,1 };

//Knapsack_Problem_01 by DP.
pair<vector<int>, vector<vector<int>>> Knapsack_Problem_01(vector<int> const &temp_VecP, vector<int> const &temp_VecW, int const &temp_w) {
	vector<int> temp_VecS;
	vector<vector<int>> temp_VecR;
	temp_VecS.resize(temp_VecP.size());
	temp_VecR.resize(temp_VecP.size());

	for(auto &i : temp_VecR) {
		i.resize(temp_w + 1);
	}

	//Solving the max price.
	for(auto i = 1; i != temp_VecP.size(); ++i) {
		for(auto j = 1; j <= temp_w; ++ j) {
			if(j < temp_VecW[i]) {
				temp_VecR[i][j] = temp_VecR[i - 1][j];
			}
			else {
				temp_VecR[i][j] = max(temp_VecR[i - 1][j - temp_VecW[i]] + temp_VecP[i], temp_VecR[i - 1][j]);
			}
		}
	}

	//Saving the result of each one.
	auto w = temp_w;
	for(auto i = temp_VecP.size() - 1; i >= 1; --i) {
		if(temp_VecR[i][w] > temp_VecR[i - 1][w]) {
			temp_VecS[i] = 1;
			w -= temp_VecW[i];
		}
		else {
			temp_VecS[i] = 0;
		}
	}

	return make_pair(temp_VecS, temp_VecR);
}

int main() {
	auto temp_Pair =  Knapsack_Problem_01(temp_VecP, temp_VecW, 10);

	for (auto &i : temp_Pair.first) {
		cout << i << " ";
	}
	cout << endl << endl;

	for(auto &i : temp_Pair.second) {
		for(auto &j : i) {
			cout << j << " ";
		}
		cout << endl;
	}

	return 0;
}

分数背包:

#include <iostream>
#include <utility>
#include <vector>

using namespace std;

//Data.
vector<int> temp_VecP = { 0,60,100,120 }, temp_VecW = { 0,10,20,30 };

//Knapsack_Problem_fraction by Greedy.
pair<vector<pair<int, int>>, int> Knapsack_Problem_fraction(vector<int> const &temp_VecP, vector<int> const &temp_VecW, int const &temp_w) {
	vector<pair<int, int>> temp_VecPair;
	auto temp_v = 0, temp_c = 0;

	for(auto i = 1; i != temp_VecP.size(); ++i) {
		if(temp_VecW[i] + temp_c >= temp_w) {
			temp_VecPair.push_back(make_pair(temp_VecP[i], temp_w - temp_c));
			temp_v += (temp_w - temp_c) * (temp_VecP[i] / temp_VecW[i]);
			return make_pair(temp_VecPair, temp_v);
		}
		temp_VecPair.push_back(make_pair(temp_VecP[i], temp_VecW[i]));
		temp_v += temp_VecP[i];
		temp_c += temp_VecW[i];
	}

	return make_pair(temp_VecPair, temp_v);
}

int main() {
	auto temp_VecPair = Knapsack_Problem_fraction(temp_VecP, temp_VecW, 50);
	cout << temp_VecPair.second << endl;

	for(auto &i : temp_VecPair.first) {
		cout << i.first << " " << i.second << endl;
	}

	return 0;
}
微信扫码订阅
UP更新不错过~
关注
  • 0
    点赞
  • 2
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_MICHAEL_LIU_

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值