组合数学——莫比乌斯反演

liu_jiangwen

Mo¨bius M o ¨ b i u s 函数

Mo¨bius M o ¨ b i u s 函数定义

μ(m)=1,m=1;(1)k,mk;0,; μ ( m ) = { 1 , m = 1 ; ( − 1 ) k , m是k个不同素数乘积 ; 0 , 其他情形 ;
例如: 30=2×3×5,121=112,μ(30)=(1)3,μ(121)=0 30 = 2 × 3 × 5 , 121 = 11 2 , 则 μ ( 30 ) = ( − 1 ) 3 , μ ( 121 ) = 0

Mo¨bius M o ¨ b i u s 函数性质
  • 性质一:序列 μ(d) μ ( d ) 满足下面公式:
    d|nμ(d)={1,n=10,n>1(1) (1) ∑ d | n μ ( d ) = { 1 , 若n=1 0 , 若n>1

    证明:
    n=1 n = 1 ,命题成立
    n>1 n > 1 ,设 n=pα11pα22pαkk,n1=p1p2pk n = p 1 α 1 … p 2 α 2 p k α k , n 1 = p 1 p 2 … p k ,则有 d|nμ(d)=d|n1μ(d)=(11)k=0 ∑ d | n μ ( d ) = ∑ d | n 1 μ ( d ) = ( 1 − 1 ) k = 0
    d1|n d 1 | n ,性质一中 (1) ( 1 ) 等价于下列等式
    d|(n/d1)μ(d)={1,n=d10,n>d1.(2) (2) ∑ d | ( n / d 1 ) μ ( d ) = { 1 , n = d 1 0 , n > d 1 .
  • 性质二:莫比乌斯函数是积性函数。即
    μ(a)μ(b)=μ(ab)(ab) μ ( a ) ∗ μ ( b ) = μ ( a ∗ b ) ( a 、 b 互 质 )

    通过这条性质,我们可以使用线性筛在 O(n) O ( n ) 的时间复杂度内计算出 [1,n] [ 1 , n ] 内各个数的莫比乌斯函数值。具体代码请参考筛法

Mo¨bius M o ¨ b i u s 反演

Mo¨bius M o ¨ b i u s 反演公式定义

f(n) f ( n ) g(n) g ( n ) 是定义在正整数集合上的两个函数。

f(n)=d|ng(d)(M1) (M1) f ( n ) = ∑ d | n g ( d )
成立当且仅当
g(n)=d|nμ(d)f(nd)(M2) (M2) g ( n ) = ∑ d | n μ ( d ) f ( n d )
其中 μ(m) μ ( m ) Mo¨bius M o ¨ b i u s 函数,称 f(n) f ( n ) g(n) g ( n ) 互为 Mo¨bius M o ¨ b i u s 逆变换。 (M1),(M2) ( M 1 ) , ( M 2 ) 称为 Mo¨bius M o ¨ b i u s 反演公式

Mo¨bius M o ¨ b i u s 反演公式的两种形式
  • 形式一:
    f(n)=d|ng(d)g(n)=d|nμ(d)f(nd) f ( n ) = ∑ d | n g ( d ) ⇔ g ( n ) = ∑ d | n μ ( d ) f ( n d )
    由于 d d 遍历n的所有因子,当且仅当 n/d n / d 遍历 n n 的所有因子,因此上式也可以写为
    f(n)=d|ng(d)g(n)=d|nμ(nd)f(d)
  • 形式二:
    对于莫比乌斯反演公式,设 1n,dN 1 ≤ n , d ≤ N .则有
    f(n)=n|dg(d)g(n)=n|dμ(dn)f(d) f ( n ) = ∑ n | d g ( d ) ⇔ g ( n ) = ∑ n | d μ ( d n ) f ( d )
    对于形式二,也可以如下表示
    f(n)=Nnk=1g(kn)g(n)=Nnk=1μ(k)f(kn) f ( n ) = ∑ k = 1 ⌊ N n ⌋ g ( k n ) ⇔ g ( n ) = ∑ k = 1 ⌊ N n ⌋ μ ( k ) f ( k n )
Mo¨bius M o ¨ b i u s 反演公式证明
  • 形式一的证明
    (M1) ( M 1 ) 成立, d|n d | n ,则有 f(n/d)=d1|(n/d)g(d1). f ( n / d ) = ∑ d 1 | ( n / d ) g ( d 1 ) . 因为 d1|(n/d) d 1 | ( n / d ) ,所以存在 m m ,使得dd1m=n,从而 d|(n/d). d | ( n / d ) . 将上式带入 (M2) ( M 2 ) 的右端,有
    g(n)=d|nμ(d)f(nd)=d|nμ(d)d1|(n/d)g(d1)=d|nd1|(n/d)μ(d)g(d1)=d1|nd|(n/d1)μ(d)g(d1)=d1|n(d|(n/d1)μ(d))g(d1)=g(n) g ( n ) = ∑ d | n μ ( d ) f ( n d ) = ∑ d | n μ ( d ) ∑ d 1 | ( n / d ) g ( d 1 ) = ∑ d | n ∑ d 1 | ( n / d ) μ ( d ) g ( d 1 ) = ∑ d 1 | n ∑ d | ( n / d 1 ) μ ( d ) g ( d 1 ) = ∑ d 1 | n ( ∑ d | ( n / d 1 ) μ ( d ) ) g ( d 1 ) = g ( n )
    反之,设 (M2) ( M 2 ) 成立,对 d|n d | n ,有 g(n/d)=d1|(n/d)μ(d1)f(n/dd1)=d1|(n/d)f(d1) g ( n / d ) = ∑ d 1 | ( n / d ) μ ( d 1 ) f ( n / d d 1 ) = ∑ d 1 | ( n / d ) f ( d 1 ) ,将此式代入 (M1) ( M 1 ) 的右端,得
    d|n=d|ng(n/d)=d|nd1|(n/d)μ(n/dd1)f(d1)=d1|nd|(n/d1)μ(n/dd1)f(d1)=d1|nf(d1)d|(d/d1)μ((n/d1)/d)=f(n) ∑ d | n = ∑ d | n g ( n / d ) = ∑ d | n ∑ d 1 | ( n / d ) μ ( n / d d 1 ) f ( d 1 ) = ∑ d 1 | n ∑ d | ( n / d 1 ) μ ( n / d d 1 ) f ( d 1 ) = ∑ d 1 | n f ( d 1 ) ∑ d | ( d / d 1 ) μ ( ( n / d 1 ) / d ) = f ( n )
  • 形式二的证明
    g(n)=Nnk=1μ(k)f(kn)=Nnk=1μ(k)Nknj=1g(jkn)=μ(1)[f(1n)+f(2n)+f(3n)+f(4n)++f(Nn)n]+μ(2)[f(2n)+f(4n)+f(6n)+f(8n)++f(N2n)n]+μ(3)[f(3n)+f(6n)+f(9n)+f(12n)++f(N3n)n]++μ(i)[f(in)+f(2in)+f(3in)+f(4in)++f(Ni×n)n]++μ(Nn1)[f(Nn1n)+f(Nnn)]+μ(Nn)[f(Nnn)]=Nnk=1g(kn)d|kμ(d)=g(1n)μ(1)=g(n) g ( n ) = ∑ k = 1 ⌊ N n ⌋ μ ( k ) f ( k n ) = ∑ k = 1 ⌊ N n ⌋ μ ( k ) ∑ j = 1 ⌊ N k n ⌋ g ( j k n ) = μ ( 1 ) [ f ( 1 ⋅ n ) + f ( 2 ⋅ n ) + f ( 3 ⋅ n ) + f ( 4 ⋅ n ) + ⋯ + f ( ⌊ N n ⌋ ) ⋅ n ] + μ ( 2 ) [ f ( 2 ⋅ n ) + f ( 4 ⋅ n ) + f ( 6 ⋅ n ) + f ( 8 ⋅ n ) + ⋯ + f ( ⌊ N 2 n ⌋ ) ⋅ n ] + μ ( 3 ) [ f ( 3 ⋅ n ) + f ( 6 ⋅ n ) + f ( 9 ⋅ n ) + f ( 12 ⋅ n ) + ⋯ + f ( ⌊ N 3 n ⌋ ) ⋅ n ] + … + μ ( i ) [ f ( i ⋅ n ) + f ( 2 i ⋅ n ) + f ( 3 i ⋅ n ) + f ( 4 i ⋅ n ) + ⋯ + f ( ⌊ N i × n ⌋ ) ⋅ n ] + … + μ ( ⌊ N n − 1 ⌋ ) [ f ( ⌊ N n − 1 ⌋ ⋅ n ) + f ( ⌊ N n ⌋ ⋅ n ) ] + μ ( ⌊ N n ⌋ ) [ f ( ⌊ N n ⌋ ⋅ n ) ] = ∑ k = 1 ⌊ N n ⌋ g ( k n ) ∑ d | k μ ( d ) = g ( 1 ⋅ n ) ⋅ μ ( 1 ) = g ( n )
莫比乌斯反演的应用
  • 例题一
    HDU 1695
    题目大意:设 1xn,1ym 1 ≤ x ≤ n , 1 ≤ y ≤ m ,求使得 gcd(x,y)=k g c d ( x , y ) = k 的数对 (x,y) ( x , y ) 的数目, (x,y)(y,x) ( x , y ) 和 ( y , x ) 是同一个数对, m,n,k100000 m , n , k ≤ 100000 .
    解法:
    不妨设 nm n ≤ m
    f(k) f ( k ) gcd(x,y)=k g c d ( x , y ) = k 的个数, g(k) g ( k ) 为满足 kgcd(x,y) k ∣ g c d ( x , y ) (x,y) ( x , y ) 数目,则有
    g(k)=x=1nkf(kx) g ( k ) = ∑ x = 1 ⌊ n k ⌋ f ( k ⋅ x )
    由莫比乌斯反演公式形式二,可以得到
    f(k)=x=1Nkμ(x)g(kx) f ( k ) = ∑ x = 1 ⌊ N k ⌋ μ ( x ) g ( k ⋅ x )
    易知
    g(k)=mknk g ( k ) = ⌊ m k ⌋ ⋅ ⌊ n k ⌋
    于是
    f(k)=x=1Nkμ(x)mkxnkx f ( k ) = ∑ x = 1 ⌊ N k ⌋ μ ( x ) ⌊ m k ⋅ x ⌋ ⋅ ⌊ n k ⋅ x ⌋

    显然 f(k) f ( k ) 就是答案,暴力求是 O(n) O ( n ) 的。如何快速求?这里很重要的思想就是分块, nk ⌊ n k ⌋ 有至多 O(n) O ( n ) 个取值。
    证明:
    1kn 1 ≤ k ≤ n 时,由于d 只有 n n 个,所以 nd ⌊ n d ⌋ 也只有至多 n n 个取值。
    nkn n ≤ k ≤ n 时,由于 nd ⌊ n d ⌋ 小于 n n ,所以 nd ⌊ n d ⌋ 也只有至多 n n 个取值。
    nd ⌊ n d ⌋ 至多有 O(n) O ( n ) 个取值

同理 md ⌊ m d ⌋ 也只有至多 O(m) O ( m ) 个取值,又因为取值是连续的,所以 nd ⌊ n d ⌋ md ⌊ m d ⌋ 同时不变的段数有 O(n+m) O ( n + m ) 个。
对于相等的段,我们求取 μ μ 的前缀和,即可批量计算这一个段的答案。

LL mobius(int n, int m, int d) {
    if (n > m) {
        swap(n, m);
    }
    LL ans = 0;
    n /= d, m /= d;
    for (int i = 1, last = 1; i <= n; i = last + 1) {
        last = min(n / (n / i), m / (m / i));
        ans += (ll)(sum[last] - sum[i - 1]) * (n / i) * (m / i);
    } 
    return ans;
}

对于位置 i i ,找到下一个相等的位置的代码为min(n/(n/i),m/(m/i))。对于 n n 来说,我们要找到最大的j,满足:

njni ⌊ n j ⌋ ≥ ⌊ n i ⌋

可以拆掉左边的底:
njni n j ≥ ⌊ n i ⌋

继续化简:
jnni j ≤ ⌊ n ⌊ n i ⌋ ⌋

所以
j=nni j = ⌊ n ⌊ n i ⌋ ⌋
m m 同理,取两个j最小值即为都不变的段 [i,j] [ i , j ]
HDU 1695 代码

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;

const LL maxn = 100001;
LL mu[maxn];
bool isPrim[maxn];
LL primes[maxn];
LL countPrime;
LL sum[maxn];

void sieve() {
    LL temp;
    memset(isPrim, -1, sizeof(isPrim));
    mu[1] = 1;
    countPrime = 0;
    for(LL i = 2; i < maxn; i++) {
        if(isPrim[i]) {
            mu[i] = -1;
            primes[countPrime++] = i;
        }
        for(LL j = 0; j < countPrime && (temp = i * primes[j]) < maxn; j++) {
            isPrim[temp] = false;
            if(i % primes[j] == 0) {
                mu[temp] = 0;
                break;
            }
            else {
                mu[temp] = -mu[i];
            }
        }
    }
    for(int i = 1; i < maxn; i++) {
        sum[i] = sum[i-1] + mu[i];
    }
}

LL mobius(LL a, LL b, LL k) {
    a /= k;
    b /= k;
    if(a > b) {
        swap(a, b);
    }
    LL ans = 0;
    for(LL i = 1, last = 1; i <= a; i = last + 1) {
        last = min(a/(a/i), b/(b/i));
        ans += (sum[last] - sum[i-1])*((2*(b/i)-a/i+1)*(a/i)/2);
    }
    return ans;
}

int main() {
    sieve();
    LL t, a, b, c, d, k;
    scanf("%I64d",&t);
    for(LL i = 1; i <= t; i++) {
        scanf("%I64d%I64d%I64d%I64d%I64d", &a, &b, &c, &d, &k);
        if(k == 0) {
            printf("Case %I64d: %I64d\n", i, 0);
        }
        else {
            printf("Case %I64d: %I64d\n", i, mobius(b, d, k));
        }
    }
    return 0;
}
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long LL;

const int maxn = 500005;
const int maxp = 20;
bool isPrim[maxn];
LL mu[maxn];
LL primes[maxn];
LL countPrim;
LL facNum[maxn];
LL sum[maxn][maxp];

void sieve() {
    LL temp;
    memset(isPrim, -1, sizeof(isPrim));
    memset(facNum, 0, sizeof(facNum));
    memset(sum, 0, sizeof(sum));
    mu[1] = 1;
    countPrim = 0;
    for(int i = 2; i < maxn; i++) {
        if(isPrim[i]) {
            mu[i] = -1;
            facNum[i] = 1;
            primes[countPrim++] = i;
        }
        for(int j = 0; j < countPrim && (temp = i * primes[j]) < maxn; j++) {
            isPrim[temp] = false;
            facNum[temp] = facNum[i]+1;
            if(i % primes[j] == 0) {
                mu[temp] = 0;
                break;
            }
            else {
                mu[temp] = -mu[i];
            }
        }
    }

    for(int i = 1; i < maxn; i++) {
        for(int j = i; j < maxn; j += i) {
            sum[j][facNum[i]] += mu[j/i];
        }
    }
    for(int i = 1; i < maxn; i++) {
        for(int j = 1; j < maxp; j++) {
            sum[i][j] += sum[i][j-1];
        }
    }
    for(int i = 1; i < maxn; i++) {
        for(int j = 0; j < maxp; j++) {
            sum[i][j] += sum[i-1][j];
        }
    }
}

LL solve(int m, int n, int p) {
    if(p >= maxp) {
        return (LL)n*(LL)m;
    }
    LL res = 0;
    if(n > m) {
        swap(n, m);
    }
    for(int i = 1, last = 1; i <= n; i = last + 1) {
        last = min((n/(n/i)), m/(m/i));
        res += (sum[last][p] - sum[i-1][p])*(m/i)*(n/i);
        //cout<<i<<" "<<res<<endl;
    }
    return res;
}

int main() {
    sieve();
    int t, n, m, p;
    cin>>t;
    while(t--) {
        cin>>n>>m>>p;
        cout<<solve(n ,m, p)<<endl;
    }
    return 0;
}

Mo¨bius M o ¨ b i u s 反演题库

传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值