Mo¨bius M o ¨ b i u s 函数
Mo¨bius M o ¨ b i u s 函数定义
Mo¨bius M o ¨ b i u s 函数性质
- 性质一:序列
μ(d)
μ
(
d
)
满足下面公式:
∑d|nμ(d)={1,若n=10,若n>1(1) (1) ∑ d | n μ ( d ) = { 1 , 若n=1 0 , 若n>1
证明:
n=1 n = 1 ,命题成立
n>1 n > 1 ,设 n=pα11…pα22pαkk,n1=p1p2…pk n = p 1 α 1 … p 2 α 2 p k α k , n 1 = p 1 p 2 … p k ,则有 ∑d|nμ(d)=∑d|n1μ(d)=(1−1)k=0 ∑ d | n μ ( d ) = ∑ d | n 1 μ ( d ) = ( 1 − 1 ) k = 0
设 d1|n d 1 | n ,性质一中 (1) ( 1 ) 等价于下列等式∑d|(n/d1)μ(d)={1,n=d10,n>d1.(2) (2) ∑ d | ( n / d 1 ) μ ( d ) = { 1 , n = d 1 0 , n > d 1 . - 性质二:莫比乌斯函数是积性函数。即
μ(a)∗μ(b)=μ(a∗b)(a、b互质) μ ( a ) ∗ μ ( b ) = μ ( a ∗ b ) ( a 、 b 互 质 )
通过这条性质,我们可以使用线性筛在 O(n) O ( n ) 的时间复杂度内计算出 [1,n] [ 1 , n ] 内各个数的莫比乌斯函数值。具体代码请参考筛法。
Mo¨bius M o ¨ b i u s 反演
Mo¨bius M o ¨ b i u s 反演公式定义
设
f(n)
f
(
n
)
和
g(n)
g
(
n
)
是定义在正整数集合上的两个函数。
Mo¨bius M o ¨ b i u s 反演公式的两种形式
- 形式一:
f(n)=∑d|ng(d)⇔g(n)=∑d|nμ(d)f(nd) f ( n ) = ∑ d | n g ( d ) ⇔ g ( n ) = ∑ d | n μ ( d ) f ( n d )
由于 d d 遍历的所有因子,当且仅当 n/d n / d 遍历 n n 的所有因子,因此上式也可以写为
- 形式二:
对于莫比乌斯反演公式,设 1≤n,d≤N 1 ≤ n , d ≤ N .则有
f(n)=∑n|dg(d)⇔g(n)=∑n|dμ(dn)f(d) f ( n ) = ∑ n | d g ( d ) ⇔ g ( n ) = ∑ n | d μ ( d n ) f ( d )
对于形式二,也可以如下表示
f(n)=∑⌊Nn⌋k=1g(kn)⇔g(n)=∑⌊Nn⌋k=1μ(k)f(kn) f ( n ) = ∑ k = 1 ⌊ N n ⌋ g ( k n ) ⇔ g ( n ) = ∑ k = 1 ⌊ N n ⌋ μ ( k ) f ( k n )
Mo¨bius M o ¨ b i u s 反演公式证明
- 形式一的证明
设 (M1) ( M 1 ) 成立, d|n d | n ,则有 f(n/d)=∑d1|(n/d)g(d1). f ( n / d ) = ∑ d 1 | ( n / d ) g ( d 1 ) . 因为 d1|(n/d) d 1 | ( n / d ) ,所以存在 m m ,使得,从而 d|(n/d). d | ( n / d ) . 将上式带入 (M2) ( M 2 ) 的右端,有
g(n)=∑d|nμ(d)f(nd)=∑d|nμ(d)∑d1|(n/d)g(d1)=∑d|n∑d1|(n/d)μ(d)g(d1)=∑d1|n∑d|(n/d1)μ(d)g(d1)=∑d1|n(∑d|(n/d1)μ(d))g(d1)=g(n) g ( n ) = ∑ d | n μ ( d ) f ( n d ) = ∑ d | n μ ( d ) ∑ d 1 | ( n / d ) g ( d 1 ) = ∑ d | n ∑ d 1 | ( n / d ) μ ( d ) g ( d 1 ) = ∑ d 1 | n ∑ d | ( n / d 1 ) μ ( d ) g ( d 1 ) = ∑ d 1 | n ( ∑ d | ( n / d 1 ) μ ( d ) ) g ( d 1 ) = g ( n )
反之,设 (M2) ( M 2 ) 成立,对 d|n d | n ,有 g(n/d)=∑d1|(n/d)μ(d1)f(n/dd1)=∑d1|(n/d)f(d1) g ( n / d ) = ∑ d 1 | ( n / d ) μ ( d 1 ) f ( n / d d 1 ) = ∑ d 1 | ( n / d ) f ( d 1 ) ,将此式代入 (M1) ( M 1 ) 的右端,得
∑d|n=∑d|ng(n/d)=∑d|n∑d1|(n/d)μ(n/dd1)f(d1)=∑d1|n∑d|(n/d1)μ(n/dd1)f(d1)=∑d1|nf(d1)∑d|(d/d1)μ((n/d1)/d)=f(n) ∑ d | n = ∑ d | n g ( n / d ) = ∑ d | n ∑ d 1 | ( n / d ) μ ( n / d d 1 ) f ( d 1 ) = ∑ d 1 | n ∑ d | ( n / d 1 ) μ ( n / d d 1 ) f ( d 1 ) = ∑ d 1 | n f ( d 1 ) ∑ d | ( d / d 1 ) μ ( ( n / d 1 ) / d ) = f ( n ) - 形式二的证明
g(n)=∑⌊Nn⌋k=1μ(k)f(kn)=∑⌊Nn⌋k=1μ(k)∑⌊Nkn⌋j=1g(jkn)=μ(1)[f(1⋅n)+f(2⋅n)+f(3⋅n)+f(4⋅n)+⋯+f(⌊Nn⌋)⋅n]+μ(2)[f(2⋅n)+f(4⋅n)+f(6⋅n)+f(8⋅n)+⋯+f(⌊N2n⌋)⋅n]+μ(3)[f(3⋅n)+f(6⋅n)+f(9⋅n)+f(12⋅n)+⋯+f(⌊N3n⌋)⋅n]+…+μ(i)[f(i⋅n)+f(2i⋅n)+f(3i⋅n)+f(4i⋅n)+⋯+f(⌊Ni×n⌋)⋅n]+…+μ(⌊Nn−1⌋)[f(⌊Nn−1⌋⋅n)+f(⌊Nn⌋⋅n)]+μ(⌊Nn⌋)[f(⌊Nn⌋⋅n)]=∑⌊Nn⌋k=1g(kn)∑d|kμ(d)=g(1⋅n)⋅μ(1)=g(n) g ( n ) = ∑ k = 1 ⌊ N n ⌋ μ ( k ) f ( k n ) = ∑ k = 1 ⌊ N n ⌋ μ ( k ) ∑ j = 1 ⌊ N k n ⌋ g ( j k n ) = μ ( 1 ) [ f ( 1 ⋅ n ) + f ( 2 ⋅ n ) + f ( 3 ⋅ n ) + f ( 4 ⋅ n ) + ⋯ + f ( ⌊ N n ⌋ ) ⋅ n ] + μ ( 2 ) [ f ( 2 ⋅ n ) + f ( 4 ⋅ n ) + f ( 6 ⋅ n ) + f ( 8 ⋅ n ) + ⋯ + f ( ⌊ N 2 n ⌋ ) ⋅ n ] + μ ( 3 ) [ f ( 3 ⋅ n ) + f ( 6 ⋅ n ) + f ( 9 ⋅ n ) + f ( 12 ⋅ n ) + ⋯ + f ( ⌊ N 3 n ⌋ ) ⋅ n ] + … + μ ( i ) [ f ( i ⋅ n ) + f ( 2 i ⋅ n ) + f ( 3 i ⋅ n ) + f ( 4 i ⋅ n ) + ⋯ + f ( ⌊ N i × n ⌋ ) ⋅ n ] + … + μ ( ⌊ N n − 1 ⌋ ) [ f ( ⌊ N n − 1 ⌋ ⋅ n ) + f ( ⌊ N n ⌋ ⋅ n ) ] + μ ( ⌊ N n ⌋ ) [ f ( ⌊ N n ⌋ ⋅ n ) ] = ∑ k = 1 ⌊ N n ⌋ g ( k n ) ∑ d | k μ ( d ) = g ( 1 ⋅ n ) ⋅ μ ( 1 ) = g ( n )
莫比乌斯反演的应用
- 例题一
HDU 1695
题目大意:设 1≤x≤n,1≤y≤m 1 ≤ x ≤ n , 1 ≤ y ≤ m ,求使得 gcd(x,y)=k g c d ( x , y ) = k 的数对 (x,y) ( x , y ) 的数目, (x,y)和(y,x) ( x , y ) 和 ( y , x ) 是同一个数对, m,n,k≤100000 m , n , k ≤ 100000 .
解法:
不妨设 n≤m n ≤ m
设 f(k) f ( k ) 为 gcd(x,y)=k g c d ( x , y ) = k 的个数, g(k) g ( k ) 为满足 k∣gcd(x,y) k ∣ g c d ( x , y ) 的 (x,y) ( x , y ) 数目,则有g(k)=∑x=1⌊nk⌋f(k⋅x) g ( k ) = ∑ x = 1 ⌊ n k ⌋ f ( k ⋅ x )由莫比乌斯反演公式形式二,可以得到f(k)=∑x=1⌊Nk⌋μ(x)g(k⋅x) f ( k ) = ∑ x = 1 ⌊ N k ⌋ μ ( x ) g ( k ⋅ x )易知g(k)=⌊mk⌋⋅⌊nk⌋ g ( k ) = ⌊ m k ⌋ ⋅ ⌊ n k ⌋于是f(k)=∑x=1⌊Nk⌋μ(x)⌊mk⋅x⌋⋅⌊nk⋅x⌋ f ( k ) = ∑ x = 1 ⌊ N k ⌋ μ ( x ) ⌊ m k ⋅ x ⌋ ⋅ ⌊ n k ⋅ x ⌋
显然 f(k) f ( k ) 就是答案,暴力求是 O(n) O ( n ) 的。如何快速求?这里很重要的思想就是分块, ⌊nk⌋ ⌊ n k ⌋ 有至多 O(n−−√) O ( n ) 个取值。
证明:
当 1≤k≤n−−√ 1 ≤ k ≤ n 时,由于d 只有 n−−√ n 个,所以 ⌊nd⌋ ⌊ n d ⌋ 也只有至多 n−−√ n 个取值。
当 n−−√≤k≤n n ≤ k ≤ n 时,由于 ⌊nd⌋ ⌊ n d ⌋ 小于 n−−√ n ,所以 ⌊nd⌋ ⌊ n d ⌋ 也只有至多 n−−√ n 个取值。
故 ⌊nd⌋ ⌊ n d ⌋ 至多有 O(n−−√) O ( n ) 个取值
同理
⌊md⌋
⌊
m
d
⌋
也只有至多
O(m−−√)
O
(
m
)
个取值,又因为取值是连续的,所以
⌊nd⌋
⌊
n
d
⌋
与
⌊md⌋
⌊
m
d
⌋
同时不变的段数有
O(n−−√+m−−√)
O
(
n
+
m
)
个。
对于相等的段,我们求取
μ
μ
的前缀和,即可批量计算这一个段的答案。
LL mobius(int n, int m, int d) {
if (n > m) {
swap(n, m);
}
LL ans = 0;
n /= d, m /= d;
for (int i = 1, last = 1; i <= n; i = last + 1) {
last = min(n / (n / i), m / (m / i));
ans += (ll)(sum[last] - sum[i - 1]) * (n / i) * (m / i);
}
return ans;
}
对于位置 i i ,找到下一个相等的位置的代码为。对于 n n 来说,我们要找到最大的,满足:
可以拆掉左边的底:
继续化简:
所以
HDU 1695 代码
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
const LL maxn = 100001;
LL mu[maxn];
bool isPrim[maxn];
LL primes[maxn];
LL countPrime;
LL sum[maxn];
void sieve() {
LL temp;
memset(isPrim, -1, sizeof(isPrim));
mu[1] = 1;
countPrime = 0;
for(LL i = 2; i < maxn; i++) {
if(isPrim[i]) {
mu[i] = -1;
primes[countPrime++] = i;
}
for(LL j = 0; j < countPrime && (temp = i * primes[j]) < maxn; j++) {
isPrim[temp] = false;
if(i % primes[j] == 0) {
mu[temp] = 0;
break;
}
else {
mu[temp] = -mu[i];
}
}
}
for(int i = 1; i < maxn; i++) {
sum[i] = sum[i-1] + mu[i];
}
}
LL mobius(LL a, LL b, LL k) {
a /= k;
b /= k;
if(a > b) {
swap(a, b);
}
LL ans = 0;
for(LL i = 1, last = 1; i <= a; i = last + 1) {
last = min(a/(a/i), b/(b/i));
ans += (sum[last] - sum[i-1])*((2*(b/i)-a/i+1)*(a/i)/2);
}
return ans;
}
int main() {
sieve();
LL t, a, b, c, d, k;
scanf("%I64d",&t);
for(LL i = 1; i <= t; i++) {
scanf("%I64d%I64d%I64d%I64d%I64d", &a, &b, &c, &d, &k);
if(k == 0) {
printf("Case %I64d: %I64d\n", i, 0);
}
else {
printf("Case %I64d: %I64d\n", i, mobius(b, d, k));
}
}
return 0;
}
- 例题二
HDU 4746
HDU 4746 代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn = 500005;
const int maxp = 20;
bool isPrim[maxn];
LL mu[maxn];
LL primes[maxn];
LL countPrim;
LL facNum[maxn];
LL sum[maxn][maxp];
void sieve() {
LL temp;
memset(isPrim, -1, sizeof(isPrim));
memset(facNum, 0, sizeof(facNum));
memset(sum, 0, sizeof(sum));
mu[1] = 1;
countPrim = 0;
for(int i = 2; i < maxn; i++) {
if(isPrim[i]) {
mu[i] = -1;
facNum[i] = 1;
primes[countPrim++] = i;
}
for(int j = 0; j < countPrim && (temp = i * primes[j]) < maxn; j++) {
isPrim[temp] = false;
facNum[temp] = facNum[i]+1;
if(i % primes[j] == 0) {
mu[temp] = 0;
break;
}
else {
mu[temp] = -mu[i];
}
}
}
for(int i = 1; i < maxn; i++) {
for(int j = i; j < maxn; j += i) {
sum[j][facNum[i]] += mu[j/i];
}
}
for(int i = 1; i < maxn; i++) {
for(int j = 1; j < maxp; j++) {
sum[i][j] += sum[i][j-1];
}
}
for(int i = 1; i < maxn; i++) {
for(int j = 0; j < maxp; j++) {
sum[i][j] += sum[i-1][j];
}
}
}
LL solve(int m, int n, int p) {
if(p >= maxp) {
return (LL)n*(LL)m;
}
LL res = 0;
if(n > m) {
swap(n, m);
}
for(int i = 1, last = 1; i <= n; i = last + 1) {
last = min((n/(n/i)), m/(m/i));
res += (sum[last][p] - sum[i-1][p])*(m/i)*(n/i);
//cout<<i<<" "<<res<<endl;
}
return res;
}
int main() {
sieve();
int t, n, m, p;
cin>>t;
while(t--) {
cin>>n>>m>>p;
cout<<solve(n ,m, p)<<endl;
}
return 0;
}