莫比乌斯反演与容斥原理

莫比乌斯反演与容斥原理

说真的 。刚接触莫比乌斯反演的时候我觉得这玩意很神奇。
随着认识的加深。我觉得这玩意跟容斥原理真的好像。
方便理解。来个栗子。。
定义:函数 F(a) F ( a ) 有:

F(a)=a|df(d) F ( a ) = ∑ a | d f ( d )

定义从所有素数从小到大组成的集合为:
P={P1,P2,P3,...P} P = { P 1 , P 2 , P 3 , . . . P ∞ }
1 1 是不能被任何素数整除的数字。有容斥原理可得:

f(1)=F(1)0<iF(Pi)+0<i<jF(PiPj)0<i<j<kF(PiPjPk)...

答案最终有 [1,] [ 1 , ∞ ] 上的每一个 F F 的取值乘以,1或者0或者-1得到。

上面式子解释一下。F(a)对应a的倍数所组成集合对应的 f f 所有和。

若计算不可以被任何素数整除的集合对应的f,即 f(1) f ( 1 ) 。应用容斥原理。依次遍历可以被k个素数整除的交错和。

即:
f(1)=i1aiF(i) f ( 1 ) = ∑ i ≥ 1 a i F ( i )
显然有:
如果 i i 中含有平方素因子。则:
ai=0
反之。当:
i=ksetPk i = ∏ k ∈ s e t P k
其中, set s e t 为无重复元素的整数集合,则:
ai=(1)|set| a i = ( − 1 ) | s e t |
定义莫比乌斯函数:
μ(i)=ai μ ( i ) = a i
我们得到这样一个事实,对于一切算数函数 Ff F , f ,当:
F(d)=d|af(a) F ( d ) = ∑ d | a f ( a )
则有:
f(d)=d|aμ(ad)F(a) f ( d ) = ∑ d | a μ ( a d ) F ( a )
对于这种无穷形式。我们还有一种较为对称的形式。
即:
F(d)=a|df(a) F ( d ) = ∑ a | d f ( a )
则:
f(d)=a|dμ(a)F(da) f ( d ) = ∑ a | d μ ( a ) F ( d a )
这中形式形如一种卷积。
我们先不证明上式的正确性。(直接证明也可以。但不能的到更多的东西。
定义函数卷积运算,即函数 ABC A , B , C 有:
C(n)=ab=nA(a)B(b) C ( n ) = ∑ a ∗ b = n A ( a ) B ( b )
我们记上述运算为狄利克雷积:
AB=C A ∗ B = C
得到了一个新函数。
这可以看作一个函数运算。
容易有:
(AB)C=A(BC)AB=BA ( A ∗ B ) ∗ C = A ∗ ( B ∗ C ) A ∗ B = B ∗ A
上述反演可以定义为:
fI=F f ∗ I = F
则:
f=Fμ f = F ∗ μ
其中:
I(n)=1 I ( n ) = 1
定义单位元函数 e e 有:
fe=f
显然:
e(n)=[n=1] e ( n ) = [ n = 1 ]
如果:
f=Fμ=fIμ=f f = F ∗ μ = f ∗ I ∗ μ = f
则显然:
Iμ=e I ∗ μ = e
证明:
fI=F    Fμ=f f ∗ I = F     蕴 含     F ∗ μ = f
只需要证明:
μI=e μ ∗ I = e
即:
a|nμ(a)=[n=1] ∑ a | n μ ( a ) = [ n = 1 ]
n=1 n = 1 时显然成立。
n>1 n > 1 时。

记:
n=isetPxii n = ∏ i ∈ s e t P i x i

set s e t 为不含重复元素的 n n 的素数数集合。

则:
a|nμ(a)=k=0|set|(1)k(|set|k)=(11)|set|=0

得证。
通常与容斥原理有关的 都会应用到第一个向无穷情况的形式,而这个多数与容斥关系不大。
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值