ACM常用数列

Catalan数

一个凸 n n n边形通过不相交于 n n n边形内部的对角线把 n n n边形拆分成若干三角形,不同的拆分数用 C n C_n Cn表示.该拆分数即为卡特兰数。

  1. 卡特兰数的递推关系
    定理: Catalan数 C n C_n Cn满足以下递推关系:
     ①: C n + 1 = C 2 C n + C 3 C n − 1 + ⋯ + C n − 1 C 3 + C n − 1 C 2 = ∑ k = 2 n C k C n − k + 2 C_{n + 1} = C_{2}C_{n} + C_{3}C_{n-1} + \cdots + C_{n-1}C_{3} + C_{n-1}C_{2} = \sum_{k = 2}^{n}C_{k}C_{n-k+2} Cn+1=C2Cn+C3Cn1++Cn1C3+Cn1C2=k=2nCkCnk+2
     ②: ( n − 3 ) C n = n 2 ( C 3 C n − 1 + C 4 C n − 2 + ⋯ + C n − 2 C 4 + C n − 1 C 3 ) (n-3)C_{n} = \frac{n}{2}(C_{3}C_{n-1} + C_{4}C_{n-2} + \cdots + C_{n-2}C_{4} + C_{n-1}C_{3}) (n3)Cn=2n(C3Cn1+C4Cn2++Cn2C4+Cn1C3)
  2. 卡特兰数计算公式
    C n + 1 = 1 n ( 2 n − 2 n − 1 ) C_{n + 1} = \frac{1}{n}\binom{2n-2}{n-1} Cn+1=n1(n12n2)
  3. 卡特兰数意义
  • n n n边形的拆分数
    一个凸 n n n边形通过不相交于 n n n边形内部的对角线把 n n n边形拆分成若干三角形,不同的拆分数的数量设为 C n C_n Cn, 有 C n + 1 = 1 n ( 2 n − 2 n − 1 ) C_{n + 1} = \frac{1}{n}\binom{2n-2}{n-1} Cn+1=n1(n12n2)
    • n n n个数的连乘方案数量, n n n对括号的合法排列方式
      P = a 1 a 2 ⋯ a n P = a_1a_2\cdots a_n P=a1a2an是n个数的连乘积,不改变其顺序,只用加进括号来表示乘积的顺序,方案的数量设为 p n p_n pn,则有 p n = C n + 1 = 1 n ( 2 n − 2 n − 1 ) p_n = C_{n+1} = \frac{1}{n}\binom{2n-2}{n-1} pn=Cn+1=n1(n12n2)
    • 具有 n n n个节点的二叉树的数量
      • 若节点无区别,则不同的二叉树的数量设为 t n t_n tn,有 t n = p n + 1 = C n + 2 = 1 n + 1 ( 2 n n ) t_n = p_{n + 1} = C_{n + 2} = \frac{1}{n + 1}\binom{2n}{n} tn=pn+1=Cn+2=n+11(n2n)
      • n n n个节点互不相同,则不同的二叉树数量设为 T n T_n Tn,有 T n = n ! ⋅ t n T_n = n!\cdot t_n Tn=n!tn
    • 在棋盘上从 ( 0 , 0 ) (0,0) (0,0)点走到 ( n , n ) (n, n) (n,n)点,要求保证 x ≤ y x \leq y xy
      设方案数量为 s n s_n sn,有 s n = C n + 2 = 1 n + 1 ( 2 n n ) s_n = C_{n+2} = \frac{1}{n + 1}\binom{2n}{n} sn=Cn+2=n+11(n2n)

Stirling数

第一类斯特林数
  1. 定义:将n个不同的球排列成 m个非空圆排列的方案数目称为第一类斯特林数,表示为 s ( n , m ) , ( n ≥ m ) s(n, m), (n \geq m) s(n,m),(nm)
  2. 递推公式 s ( n , m ) = ( n − 1 ) s ( n − 1 , m ) + s ( n − 1 , m − 1 ) s(n, m) = (n - 1)s(n - 1, m) + s(n - 1, m - 1) s(n,m)=(n1)s(n1,m)+s(n1,m1)
  3. 性质:①: s ( n , n ) = 1 , n ≥ 0 s(n, n) = 1, n \geq 0 s(n,n)=1,n0
       ②: s ( n , 0 ) = 0 , n > 0 s(n, 0) = 0, n > 0 s(n,0)=0,n>0
       ③: s ( n , 1 ) = ( n − 1 ) ! s(n, 1) = (n - 1)! s(n,1)=(n1)!
       ④: S ( n , n − 1 ) = C ( n , 2 ) S(n, n - 1) = C(n, 2) S(n,n1)=C(n,2)
       ⑤: ∑ k = 0 n s ( n , k ) = n ! \sum_{k = 0}^{n}s(n, k) = n! k=0ns(n,k)=n!
  4. 第一类斯特林数打表
    第一类斯特林数打表
第二类斯特林数
  1. 定义:将n个求区别的球放入到m个相同的盒子中,要求无一空盒,其不同的方案数称为第二类斯特林数,表示为 S ( n , m ) S(n, m) S(n,m)
  2. 递推公式 S ( n , m ) = S ( n − 1 , m − 1 ) + m S ( n − 1 , m )          ( n > 1 , m ≥ 1 ) S(n, m) = S(n - 1, m - 1) + mS(n - 1, m)\;\;\;\;(n > 1, m \geq 1) S(n,m)=S(n1,m1)+mS(n1,m)(n>1,m1)
  3. 通项公式 S ( n , m ) = 1 m ! ∑ k = 0 m − 1 ( − 1 ) k ( m k ) ( m − k ) n S(n ,m) = \frac{1}{m!}\sum_{k = 0}^{m - 1}(-1)^k\binom{m}{k}(m - k)^n S(n,m)=m!1k=0m1(1)k(km)(mk)n
  4. 第二类斯特林数奇偶性判断
    { n k } ≡ ( n − ⌈ k + 1 2 ⌉ ⌊ k − 1 2 ⌋ ) m o d      2 \begin{Bmatrix} n\\ k\end{Bmatrix} \equiv \binom{n - \left \lceil \frac{k + 1}{2} \right \rceil} {\left \lfloor \frac{k - 1}{2} \right \rfloor } mod\;\;2 {nk}(2k1n2k+1)mod2
  5. 性质:①: S ( n , 0 ) = S ( 0 , n ) = 0 , ∀ n ∈ N S(n , 0) = S(0, n) = 0 ,\forall n \in N S(n,0)=S(0,n)=0,nN
       ②: S ( n , k ) > 0 , n ≥ k ≥ 1 S(n, k) > 0, n \geq k \geq 1 S(n,k)>0,nk1
       ③: S ( n , k ) = 0 , k > n ≥ 1 S(n, k) = 0, k > n \geq 1 S(n,k)=0,k>n1
       ④: S ( n , 1 ) = 1 , n ≥ 1 S(n, 1) = 1, n \geq 1 S(n,1)=1,n1
       ⑤: S ( n , n ) = 1 , n ≥ 1 S(n, n) = 1, n \geq 1 S(n,n)=1,n1
       ⑥: S ( n , 2 ) = 2 n − 1 S(n, 2) = 2^n - 1 S(n,2)=2n1
       ⑦: S ( n , 3 ) = 1 2 ( 3 n − 1 + 1 ) − 2 n − 1 S(n, 3) = \frac{1}{2}(3^{n - 1} + 1) - 2^{n - 1} S(n,3)=21(3n1+1)2n1
       ⑧: S ( n , n − 1 ) = ( n 2 ) S(n, n - 1) = \binom{n}{2} S(n,n1)=(2n)
       ⑨: S ( n , n − 2 ) = ( n 3 ) + 3 ( n 4 ) S(n, n - 2) = \binom{n}{3} + 3 \binom{n}{4} S(n,n2)=(3n)+3(4n)
  6. 第二类斯特林数打表
    第二类斯特林数打表

Bell数

  1. 定义:贝尔数指的是将含有 n n n个不同的数字的的集合划分为若干个非空子集的划分方案数量。表示为 B n B_n Bn
  2. 递推关系
    ①: B n + 1 = ∑ k = 0 n ( n k ) B k B_{n + 1} = \sum_{k = 0}^{n}\binom{n}{k}B_k Bn+1=k=0n(kn)Bk
    ②: B n = ∑ k = 1 n S ( n , k ) B_n = \sum_{k = 1}^{n}S(n, k) Bn=k=1nS(n,k)
  3. 性质
    ①:若 p p p为质数,则$B_{p^m + n} \equiv mB_n + B_{n + 1} (mod;;p) $
    ②:贝尔数模素数 p p p的周期为 N p = p p − 1 p − 1 N_p = \frac{p^p - 1}{p - 1} Np=p1pp1
  4. 贝尔三角形:贝尔三角形的构造方法类似于杨辉三角形,具体如下:
  • 第一行第一个元素是 1 1 1, 即 a [ 1 ] [ 1 ] = 1 a[1][1] = 1 a[1][1]=1
  • n > 1 n > 1 n>1,则第 n n n行第一项等于第 n − 1 n - 1 n1行最后一项,即 a [ n ] [ 1 ] = a [ n − 1 ] [ n − 1 ] a[n][1] = a[n - 1][n - 1] a[n][1]=a[n1][n1]
  • 对于 m , n > 1 m, n > 1 m,n>1,第 n n n行第 m m m项等于它左边和左上方两个数之和,即 a [ n ] [ m ] = a [ n ] [ m − 1 ] + a [ n − 1 ] [ m − 1 ] a[n][m] = a[n][m - 1] + a[n - 1][m - 1] a[n][m]=a[n][m1]+a[n1][m1]
    贝尔三角形
    可以发现,从第二行开始,每一行第一项即为贝尔数
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值