34 图像锐化
代码
import cv2 as cv
import numpy as np
src = cv.imread("../images/xiaomaolu.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
# cv.imshow("input", src)
# sharpen_op = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]], dtype=np.float32)
sharpen_op = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], dtype=np.float32)
sharpen_image = cv.filter2D(src, cv.CV_32F, sharpen_op)
sharpen_image = cv.convertScaleAbs(sharpen_image)
# cv.imshow("sharpen_image", sharpen_image)
h, w = src.shape[:2]
result = np.zeros([h, w*2, 3], dtype=src.dtype)
result[0:h,0:w,:] = src
result[0:h,w:2*w,:] = sharpen_image
cv.putText(result, "original image", (10, 30), cv.FONT_ITALIC, 1.0, (0, 0, 255), 2)
cv.putText(result, "sharpen image", (w+10, 30), cv.FONT_ITALIC, 1.0, (0, 0, 255), 2)
cv.imshow("sharpen_image", result)
cv.imwrite("result.png", result)
cv.waitKey(0)
cv.destroyAllWindows()
实验结果
解释
图像卷积的主要有三功能分别是图像的模糊/去噪、图像梯度/边缘发现、图像锐化/增强,前面的两个功能我们以前通过相关知识点的分享加以了解,学习了相关API的使用。图像锐化的本质是图像拉普拉斯滤波加原图权重像素叠加的输出 :
-1 -1 -1
-1 C -1
-1 -1 -1
当C值大于8时候表示图像锐化、越接近8表示锐化效果越好
当C值等于8时候图像的高通滤波
当C值越大,图像锐化效果在减弱、中心像素的作用在提升
所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。