一.离散对数问题
1.基本情况
公钥密码的理论模型是单向陷门函数
- 用正变换做加密,加密效率高;
- 用逆变换作解密,安全;
- 把陷门信息作为密钥,且只分配给合法用户。确保合法用户能够方便地解密,而非法用户不能破译。
成功实例
- RSA密码建立在大合数分解的困难性之上。
- EIGamal密码建立在离散对数(乘法群)的困难性之上。
- ECC密码建立在椭圆曲线离散对数(加法群)的困难性之上。
2.离散对数问题
EIGamal公钥密码
椭圆曲线离散对数问题
1.素域上的椭圆曲线
2.素域上的椭圆曲线
3.椭圆曲线解点加法运算的几何意义
如图:
4.例题:
6.椭圆曲线群上的离散对数问题
四.椭圆曲线公钥密码
1.椭圆曲线密码的一般情况
- 一些国际标准化组织已经把椭圆曲线密码作为新的信息安全标准。如,IEEE P1363/D4等标准,分别规范了椭圆曲线密码在Internet协议安全,电子商务,web服务器,空间通信,移动通信,智能卡等方面。
- 我国商用密码采用了椭圆曲线密码,并具体颁布了椭圆曲线密码标准SM2。
- 椭圆曲线密码已经称为除RSA密码之外呼声最高的公钥密码之一。
- 它密钥短,软件实现规模小,硬件实现节省电路。
- 由于椭圆曲线离散对数问题尚没有发现亚指数算法,所以普遍认为,椭圆曲线密码比RSA和EIGamal密码更安全。
- 160位的椭圆曲线密码的安全性相当于1024位的RSA密码。
- 而且运算速度也比较快。
中国商用椭圆曲线公钥密码SM2