已读论文记载(二)

A multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation(Shuo Wang,2017):multi-view的卷积神经网络专门在axial,coronal,sagittal三个CT的view下捕捉多种多样的结核敏感特征。整个网络结构里面有三个CNN分支,每个分支可以接受多尺度的结核patches作为输入,分别对应axial,coronal,sagittal的三个CT view。其中训练集的制作中随机采样出等量的结核和非结核样本。结核样本的制作如下:先对结核识别出一个长方体边界框,然后扩充此框添加一些非结核的体素。


Sementic Image Segmentation with  Deep Convolutional Nets And Fully Connected CRFs(Liang-Chieh Chen,2016):deep convolutional neural networks(DCNNs) 适用于一些高层次的视觉任务,本文将DCNNs和概率图谱模型结合用于像素级别的分类任务中。DCNNs对于物体分割的精确度不高,原因在文章中解释为this is due to the very invariance properties,也就是说DCNNs因为池化实现了抽取特征的视觉不变性,但是也因为池化丢失了很多细节信息(关于视觉不变性的相关内容具体见博文http://blog.csdn.net/MajorDong100/article/details/51406434)。所以本文提出的方法里面引入了一个全连接的conditional random field(CRF)条件随机场来获取细节部分的信息。CRF经常被用于语义分割,它将分类器的类评分和从像素和边界中提取的低层次局部信息结合起来。CRF鼓励空间上邻近的像素有相同的标签,可以清除分类器中一些假的预测,构建局部的手工设计特征。本文中使用了成对的CRF,并且使用类似超像素的bounding box或者masked regions作为输入为DCNN提供外形信息。

先使用DCNN,然后再做分割,可以避免不成熟的决策带来的错误,于是可以把VGG-16修改为特征抽取器。同时,本文的一个创新点是直接使用CRF来直接优化DCNN-driven的损失函数。卷积神经网络的输出足够平滑,所以可以使用二次线性插值直接放大。本文还将输入和一些特征图连接到最后一层的特征图上。

本文还有一个特色就是Figure 1中演示的hole algorithm,通过调整input stride来解决DCNN中pooling引起的局部空间信息丢失问题。

最后,文章中的方法都是用Caffe平台实现了,代码在网站http://bitbucket.org/deeplab/deeplab-public上可以下载。


Representative Discovery of Structure Cues for Weakly-supervised Image Segmentation(Luming Zhang,2014):本文提出的算法从图片标签中学习了空间结构的超像素集的分布(distribution)。首先,得到按照空间结构排列的超像素图片(graphlet),然后使用了流形算法中的manifold embedding算法将标签从原始图片中传递(transfer)到相对应的超像素图片中。使用Gaussian mixture model(GMM)混合高斯模型来学习流行算法输出的超像素图片的分布(distribution)。最后,提出了一种图片分割算法,被称作representative graphlet cut,利用GMM作为先验来评价测试图片的同质性(homogeneity)。


Weakly-Supervised Image Annotation and Segmentation with Objects and Attributes(Zhiyuan Shi,2017):本文解决的问题如下:给定一系列图片作为训练集,这些图片带着图片级别的目标标签和属性标签,但并不说明属性标签与目标标签之间的对应关系,在此前提下设计一个学习算法模型,对于一张新的图片,可以分割出图片中的所有目标,并标记出相应的属性标签。一旦模型学习成功,就可以解决一系列的视觉问题,如目标的自动标记,用相应的属性描述目标,目标检测及语义分割等等。

以往的研究中,大部分计算机视觉问题都被独立解决并且大多使用了全监督的学习算法。然而最近有研究表明,对属性建模促进了目标检测的准确率,反之亦然。所以本文将这些问题综合解决,并利用弱标记的学习算法突破训练集数量的限制。

本文的模型主要是扩展了传统的Indian Buffet Process(IBP)模型,IBP是一个隐含特征模型,它可以被每一个隐含的特征激活,它将图像解释为一系列带权重的激活因子之和,所以可以利用IBP对一些训练集中未被标记的但是物体固有的隐含属性也进行建模,如香蕉的“黄色”属性。本文将其扩展为weakly-supervised markov random field stacked indian buffet process(WS-MRF-SIBP)算法,先将图片over-segment成一组超像素,其中每个超像素被表示为一个1024-D的向量,这个向量对应一个目标及目标相关联的属性。于是本文把原始的问题转化为了超像素多标签分类问题,每一个超像素对应背景或者对应一个带任意个属性的目标(我觉得从此处可以看出这种将现实问题抽象成正确数学模型的能力非常重要),消除了弱标签超视觉问题的歧义(来自背景或者其他目标属性的干扰等等)。除此之外,本文还有一个特点,即它利用了两个MRF:超像素间的MRF利用了空间平滑信息、超像素内的MRF利用了同一个目标的不同属性共存的统计信息,增强了目标标签与周围相邻区间的空间一致性。而且WS-MRF-SIBP模型还将MRF当做IBP的两个隐含引资来建模,以获取超像素内的目标-属性共存信息和同一个目标的属性-属性共存信息。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值