Sifid and Strange Subsequences

A sequence (b1,b2,…,bk) is called strange, if the absolute difference between any pair of its elements is greater than or equal to the maximum element in the sequence. Formally speaking, it’s strange if for every pair (i,j) with 1≤i<j≤k, we have |ai−aj|≥MAX, where MAX is the largest element of the sequence. In particular, any sequence of length at most 1 is strange.

For example, the sequences (−2021,−1,−1,−1) and (−1,0,1) are strange, but (3,0,1) is not, because |0−1|<3.

Sifid has an array a of n integers. Sifid likes everything big, so among all the strange subsequences of a, he wants to find the length of the longest one. Can you help him?

A sequence c is a subsequence of an array d if c can be obtained from d by deletion of several (possibly, zero or all) elements.

Input
The first line contains an integer t (1≤t≤104) — the number of test cases. The description of the test cases follows.

The first line of each test case contains an integer n (1≤n≤105) — the length of the array a.

The second line of each test case contains n integers a1,a2,…,an (−109≤ai≤109) — the elements of the array a.

It is guaranteed that the sum of n over all test cases doesn’t exceed 105.

Output
For each test case output a single integer — the length of the longest strange subsequence of a.

Example
inputCopy
6
4
-1 -2 0 0
7
-3 4 -2 0 -4 6 1
5
0 5 -3 2 -5
3
2 3 1
4
-3 0 2 0
6
-3 -2 -1 1 1 1
outputCopy
4
5
4
1
3
4
Note
In the first test case, one of the longest strange subsequences is (a1,a2,a3,a4)
In the second test case, one of the longest strange subsequences is (a1,a3,a4,a5,a7).

In the third test case, one of the longest strange subsequences is (a1,a3,a4,a5).

In the fourth test case, one of the longest strange subsequences is (a2).

In the fifth test case, one of the longest strange subsequences is (a1,a2,a4).

我认识每一个字,就是读不懂题。
本题大意:一个符合标准的数列就是将其中任意一对数的差值的绝对值小于该数列的最大值,我们可以去掉数列中的任意元素来达到这个目的。
解法:首先如果一个数列都是负数,那么肯定会满足,所以我们根本不需要考虑负数的问题,0也是,我们只需要考虑正数,正数如果存在,那么它必须只有一个,因为如果两个正数相减永远不会比其中一个正数大,而且这个正数还不能比任意两个负数相减的差值的绝对值大。

#include<iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
long long fab(long long x)//取绝对值
{
	if (x < 0)
		return (-x);
	else return x;
}
int main()
{
	int t, n;
	int a[100001];
	int b[100001];
	scanf_s("%d", &t);
	while (t--)
	{
		scanf_s("%d", &n);
		int ans = 0;
		int cnt = 0;
		for (int i = 1; i <= n; i++)
		{
			scanf_s("%d", &a[i]);
			ans += a[i] <= 0;
			if (a[i] <= 0)
				b[++cnt] = a[i];
		}
		sort(b + 1, b + cnt + 1);
		long long temp = 10000000000;
		for (int i = 1; i < cnt; i++)
			temp = min(temp, fab(b[i] - b[i + 1]));
		for (int i = 1; i <= n; i++)
			if (a[i] > 0 && a[i] <= temp){
				++ans;
				break;
			}
		printf("%d\n", ans);
	}
	return 0;
}

return code;

### USACO 2016 January Contest Subsequences Summing to Sevens Problem Solution and Explanation In this problem from the USACO contest, one is tasked with finding the size of the largest contiguous subsequence where the sum of elements (IDs) within that subsequence is divisible by seven. The input consists of an array representing cow IDs, and the goal is to determine how many cows are part of the longest sequence meeting these criteria; if no valid sequences exist, zero should be returned. To solve this challenge efficiently without checking all possible subsequences explicitly—which would lead to poor performance—a more sophisticated approach using prefix sums modulo 7 can be applied[^1]. By maintaining a record of seen remainders when dividing cumulative totals up until each point in the list by 7 along with their earliest occurrence index, it becomes feasible to identify qualifying segments quickly whenever another instance of any remainder reappears later on during iteration through the dataset[^2]. For implementation purposes: - Initialize variables `max_length` set initially at 0 for tracking maximum length found so far. - Use dictionary or similar structure named `remainder_positions`, starting off only knowing position `-1` maps to remainder `0`. - Iterate over given numbers while updating current_sum % 7 as you go. - Check whether updated value already exists inside your tracker (`remainder_positions`). If yes, compare distance between now versus stored location against max_length variable's content—update accordingly if greater than previous best result noted down previously. - Finally add entry into mapping table linking latest encountered modulus outcome back towards its corresponding spot within enumeration process just completed successfully after loop ends normally. Below shows Python code implementing described logic effectively handling edge cases gracefully too: ```python def find_largest_subsequence_divisible_by_seven(cow_ids): max_length = 0 remainder_positions = {0: -1} current_sum = 0 for i, id_value in enumerate(cow_ids): current_sum += id_value mod_result = current_sum % 7 if mod_result not in remainder_positions: remainder_positions[mod_result] = i else: start_index = remainder_positions[mod_result] segment_size = i - start_index if segment_size > max_length: max_length = segment_size return max_length ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值