Summary-1: Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping

Paper-summary-1, Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping

ref: Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping

首先整篇文章主要讲的是一系列针对 DTW 算法的时间优化策略,还包括与一部分主流的同类算法的效果对比,而且根据paper中所列的结果来看,这些优化策略在时间上确实表现出来了明显的提升,非常值得借鉴。
在这里DTW的全称是“Dynamic Time Warping”,本身是一个衡量两个序列相似程度的算法,而且在众多相关文章的验证下,可以说是针对时间序列问题的最好算法之一,但同时它也存在着同类算法的共同瓶颈问题,时间复杂度较高而无法适用于“大”数据。而这也是本篇paper旨在解决的。

How does DTW (Dynamic Time Warping) work

**Explaination:**假设已知两个序列 X X X Y Y Y,长度分别为 M M M N N N。当 M = N M=N M=N的时候,此时最简单且直接的办法就是算“点对点”的欧式距离,但局限就是要求X与Y的序列长度相同,而显而易见这个并不能保证任何场景都满足。当两者都不等长时候,就不能像理想状况那样找到唯一且符合常识的对应关系,在这种情况下,我们需要综合考虑两个序列所能构成的所有“点与点”之间的对应关系(或者说是X上的任意点与Y上的任意点的距离),这样我们总共可以获得 M × N M×N M×N 对点,也就是 M × N M×N M×N个“距离”。如果我们将这些距离用一个M×N的矩阵表示出来 C o s t ∈ R M × N Cost \in R^{M\times N} CostRM×N,在这里元素 C o s t i , j Cost_{i,j} Costi,j 指的就是X上的index 为i的值与Y上index为j的值的距离。为了获得一个可以表示similarity的数字(这里定义为 c o s t cost cost),DTW提供了一个基于该矩阵获得measure的思路:找一条起始于 ( 0 , 0 ) (0,0) 0,0终于 ( M − 1 , N − 1 ) (M-1,N-1) M1N1而且monotonic的路径,要求该路径所覆盖的“距离”总和最小。问题也因此被简化为了一个动态规划中的“最短路径”问题。

Definitions and Notations
  • Definition-1: 定义有序序列 T = t 1 , t 2 , . .
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值