算法层--机器学习
文章平均质量分 95
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
路途…
Reading is a long investment.During this process, find the entertainment and enjoy life while treasure the present to compound interest.
展开
-
【其他】简易代码项目记录
识别字符中的俩个关键点。原创 2024-02-25 22:33:11 · 1168 阅读 · 0 评论 -
【Pytorch】Model存储
1. 保存加载模型权重pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式。而pth文件是python中存储文件的常用格式。而在keras中则是使用.h5文件。# 保存模型示例代码print('===> Saving models...')state = { 'state': model.state_dict(), 'epoch': epoch # 将epoch一并保存}if not原创 2020-07-02 12:09:48 · 674 阅读 · 0 评论 -
【机器视觉】灰度的图像模式匹配算法,将一维变为二维...
简介: 本文主要介绍几种基于灰度的图像匹配算法:平均绝对差算法(MAD)、绝对误差和算法(SAD)、误差平方和算法(SSD)、平均误差平方和算法(MSD)、归一化积相关算法(NCC)、序贯相似性算法(SSDA)。下面依次对其进行讲解。MAD算法介绍 平均绝对差算法(Mean Absolute Differences,简称MAD算法),它是Leese在197...转载 2018-05-16 16:16:26 · 3094 阅读 · 0 评论 -
对抗神经网络
转载于:https://blog.csdn.net/column/details/13914.html 对抗NN简介 概念介绍 对抗名字的由来及对抗过程 对抗NN的模型 对抗NN的模型和训练 判别网络D的最优值 模拟学习高斯分布 对抗NN实验结果 《生成对抗NN》代码的安装与运行 对抗网络相关论文 论文引用一、对抗NN简介大牛Ian J. Goodfellow 的20...转载 2018-08-20 11:40:28 · 7237 阅读 · 0 评论 -
理想低通滤波器、Butterworth滤波器和高斯滤波器
一、简介我们知道,在一幅图像中,其低频成分对应者图像变化缓慢的部分,对应着图像大致的相貌和轮廓。而其高频成分则对应着图像变化剧烈的部分,对应着图像的细节(图像的噪声也属于高频成分)。低频滤波器,顾名思义,就是过滤掉或者大幅度衰减图像的高频成分,让图像的低频成分通过。低频滤波器可以平滑图像,虑去图像的噪声。而与此相反的高频滤波器,则是过滤低频成分,通过高频成分,可以达到锐化图像的目的。理...转载 2018-08-22 09:28:12 · 14263 阅读 · 0 评论 -
SVD详解
SVD详解SVD(singular value decomposition),翻译成中文就是奇异值分解。SVD的用处有很多,比如:LSA(隐性语义分析)、推荐系统、特征压缩(或称数据降维)。SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性。 1.1奇异值分解的几何意义(因公式输入比较麻烦所以采取截图的方式)...转载 2018-07-09 13:57:27 · 3709 阅读 · 0 评论 -
协方差矩阵相关概念、性质、应用意义及矩阵特征向量的用处
1.协方差矩阵的概念:这里在讲述协方差矩阵的性质之前先讲解一下协方差、方差以及两者之间的关系【统计学中的样本方差、样本均值看我的另外一篇文章{ 浅谈均值、方差、标准差、协方差的概念及意义 }】一:方差:描述的是样本集合的各个样本点到均值的距离之平均,一般是用来描述一维数据的。方差是用来衡量单个变量“自身变异”大小的总体参数,方差越大表明该变量的变异越大。二:协方差是用来衡量两个变量之间“协同变...转载 2018-07-09 13:33:24 · 6759 阅读 · 0 评论 -
层次聚类算法的原理及实现Hierarchical Clustering
层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。在聚类树中,不同类别的原始数据点是树的最低层,树的顶层是一个聚类的根节点。创建聚类树有自下而上合并和自上而下分裂两种方法,本篇文章介绍合并方法。层次聚类的合并算法层次聚类的合并算法通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并...转载 2018-07-09 13:06:14 · 11813 阅读 · 0 评论 -
基于密度的聚类算法(如:DBSCAN)
由于聚类是无监督学习方法,不同的聚类方法基于不同的假设和数据类型,比如基于。由于数据通常可以以不同的角度进行归类,因此没有万能的通用聚类算法,并且每一种聚类算法都有其局限性和偏见性。也就是说某种聚类算法可能在市场数据上效果很棒,但是在基因数据上就无能为力了。聚类算法很多,包括基于划分的聚类算法(如:k-means),基于层次的聚类算法(如:BIRCH),基于密度的聚类算法(如:DBSCAN),基于...转载 2018-07-09 12:54:12 · 20487 阅读 · 0 评论 -
【ML算法】DWT时序匹配
转载地址:http://www.cnphp6.com/archives/60574论文介绍:https://cs.fit.edu/~pkc/papers/tdm04.pdf前言动态时间规整(Dynamic Time Warping,DTW)是孤立词识别的早期技术,梳理一下,主要包括: 1)孤立词识别操作步骤; 2)DTW原理;内容基本就是两个博文的整合,最后一并给出链...转载 2018-05-17 00:14:06 · 6670 阅读 · 1 评论 -
【Algorithm】FFT
https://www.youtube.com/watch?v=htCj9exbGo0 视频介绍https://web.eecs.umich.edu/~fessler/course/451/l/pdf/c6.pdf pdf文档原创 2019-03-30 15:52:58 · 540 阅读 · 0 评论 -
【ML】OCR 介绍
光学字符识别(Optical Character Recognition, OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。亦即将图像中的文字进行识别,并以文本的形式返回。OCR的应用场景根据识别场景,可大致将OCR分为识别特定场景的专用OCR和识别多种场景的通用OCR。比如现今方兴未艾的证件识别和车牌识别就是专用OCR的典型实例。通用OCR可以用于更复杂的场景...转载 2019-08-27 11:07:15 · 744 阅读 · 0 评论 -
高斯混合聚类
一、问题引入 我们已经使用过k-means算法解决聚类问题。这个算法的突出优点是简单易用,计算量也不多。然而,往往过于简单也是一个缺点。假设聚类可以表示为单个点往往会过于粗糙。举一个例子,如下图所示: 这个例子中数据位于同心圆。在这种情况下,标准的K均值由于两个圆的均值位置相同,无法把数据划分成簇(所以上面有一个绿点不知道该往哪跑,因为它没有簇)。因此,以距离模型为聚类标准的方法不一定都能成功适用...转载 2018-07-09 12:44:04 · 10925 阅读 · 6 评论 -
EM最大期望值
EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1. Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessi...转载 2018-07-09 12:32:06 · 928 阅读 · 0 评论 -
热度算法,基于内容,用户个性化推荐
1. 算法的发展阶段个性化推荐不是产品首次发布时就能带的,无论是基于用户行为的个性化,还是基于内容相似度的个性化,都建立在大量的用户数和内容的基础上。产品发布之初,一般两边的数据都有残缺,因此个性化推荐也无法开展。所以在产品发展的初期,推荐内容一般采用更加聚合的“热度算法”,顾名思义就是把热点的内容优先推荐给用户。虽然无法做到基于兴趣和习惯为每一个用户做到精准化的推荐,但能覆盖到大部分的内容需求,...转载 2018-04-29 11:37:29 · 19064 阅读 · 0 评论 -
【ML算法】贝叶斯滤波
1. 贝叶斯概率公式(后验概率): p(x|y)=p(y|x)p(x)p(y)=ηp(y|x)p(x)当条件概率涉及到的变量比较多,上式分母就会变得比较复杂,为表示方便这里定义ηη为归一化参数。 相似的,我们可以考虑p(x|y,z)p(x|y,z) 的条件概率,这里可以看成在zz发生的条件下,将概率p(x|y)p(x|y)进行贝叶斯公式展开,代入二元贝叶斯公式得到:p(x|y,z)=p...转载 2018-05-04 10:48:37 · 3397 阅读 · 0 评论 -
迁移学习
1. 前言迁移学习(Transfer Learning,TL)对于人类来说,就是掌握举一反三的学习能力。比如我们学会骑自行车后,学骑摩托车就很简单了;在学会打羽毛球之后,再学打网球也就没那么难了。对于计算机而言,所谓迁移学习,就是能让现有的模型算法稍加调整即可应用于一个新的领域和功能的一项技术。 不久前,香港科技大学的杨强教授在机器之心GMIS大会中回顾AlphaGo和柯洁的围棋大战时曾说,Alp...转载 2018-07-08 11:31:52 · 711 阅读 · 0 评论 -
强化学习
转载于:https://www.cnblogs.com/steven-yang/p/6649213.html强化学习的故事强化学习是学习一个最优策略(policy),可以让本体(agent)在特定环境(environment)中,根据当前的状态(state),做出行动(action),从而获得最大回报(G or return)。有限马尔卡夫决策过程马尔卡夫决策过程理论定义了一个数学模型,可用于随机...转载 2018-07-08 12:29:17 · 566 阅读 · 0 评论 -
集成学习
集成学习(ensemble learning)可以说是现在非常火爆的机器学习方法了。它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。也就是我们常说的“博采众长”。集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。本文就对集成学习的原理做一个总结。1. 集成学习概述 从下图,我们可以...转载 2018-07-08 12:38:59 · 281 阅读 · 0 评论 -
A/B-test显著性检验
转载 2018-07-09 11:34:44 · 1169 阅读 · 0 评论 -
NLP自然语言处理
1.什么是自然语言处理NLP(natural language processing)?如图所示: 我希望计算机对房间的评论结果是,可以欣赏日出。因此我理解的NLP实际上就是让计算机和人一样理解语言.2.词法分析:法分析向用户提供分词、词性标注、命名实体识别三大功能。该服务能够识别出文本串中的基本词汇(分词),对这些词汇进行重组、标注组合后词汇的词性,并进一步识别出命名实体.1)分词 中文分词是将...转载 2018-07-09 11:34:26 · 302 阅读 · 0 评论 -
TF-IDF
1、情感分析1)数据: s1=’this is a good book’ s2=’this is a awesome book’ s3=’this is a bad book’ s4=’this is a terrible book’ 2)把数据处理成向量:(不关心单词出现的顺序) 统计上面文档出现过的所有单词有’this、is 、a 、good 、awesome、 bad、 terrible、 ...转载 2018-07-08 14:44:01 · 300 阅读 · 0 评论 -
自然语言处理(NLP)四步流程:Embed->Encode->Attend->Predict
过去半年以来,自然语言处理领域进化出了一件神器。此神器乃是深度神经网络的一种新模式,该模式分为:embed、encode、attend、predict四部分。本文将对这四个部分娓娓道来,并且剖析它在两个实例中的用法。人们在谈论机器学习带来的提升时,往往只想到了机器在效率和准确率方面带给人们的提升,然而最重要的一点却是机器学习算法的通用性。如果你想写一段程序来识别社交媒体平台上的侮辱性帖子,就把...转载 2018-07-08 14:33:53 · 599 阅读 · 0 评论 -
维度灾难与过拟合
一、介绍本篇文章,我们将讨论所谓的“维度灾难”,并解释在设计一个分类器时它为何如此重要。在下面几节中我将对这个概念进行直观的解释,并通过一个由于维度灾难导致的过拟合的例子来讲解。考虑这样一个例子,我们有一些图片,每张图片描绘的是小猫或者小狗。我们试图构建一个分类器来自动识别图片中是猫还是狗。要做到这一点,我们首先需要考虑猫、狗的量化特征,这样分类器算法才能利用这些特征对图片进行分类。例如我们可以通...转载 2018-07-08 12:56:23 · 3604 阅读 · 0 评论 -
主动学习
我们使用一些传统的监督学习方法做分类的时候,往往是训练样本规模越大,分类的效果就越好。但是在现实生活的很多场景中,标记样本的获取是比较困难的,这需要领域内的专家来进行人工标注,所花费的时间成本和经济成本都是很大的。而且,如果训练样本的规模过于庞大,训练的时间花费也会比较多。那么有没有办法,能够使用较少的训练样本来获得性能较好的分类器呢?主动学习(Active Learning)为我们提供了这种可能...转载 2018-07-08 12:48:26 · 6075 阅读 · 1 评论